Внезапно, выиграть в тетрис невозможно

    Тетрис — культовая игра, созданная в СССР и, фактически, вошедшая в зал Вечной Славы геймдева, если представить, что такой существует. Простота идеи и сложность геймплея на высоких скоростях покорили умы целого поколения, представители которого часы на пролет проводили в попытках поставить максимальный рекорд по очкам.

    Сам принцип игростроя подразумевает логическое завершение игрового процесса, победу, окончательное прохождение. Однако, если вы хотите выиграть в тетрис, то у нас есть плохие новости: математически доказано, что сделать это невозможно. Кроме огромного количества тервера есть две, даже три банальные причины, по которым выиграть в тетрис нельзя.

    В каноничном монохромном тетрисе есть семь различных фигур, все вы их прекрасно знаете. Если скомпоновать их в один моноблок, то получится прямоугольник шириной в 8 клеток, а игровое поле тетриса, так называемый «стакан», имеет ширину в 10 клеток. Вот тут и кроется первая проблема.

    Вторая и третья особенность тетриса, которая всегда ведет к проигрышу, это S и Z-фигуры соответственно (да-да, именно те мерзкие загогулины, которые некуда воткнуть). Но даже если поток фигур будет идеальным, т.е. вы сможете расставлять их почти без пробелов, то примерно за 70 000 ходов вы всеравно проиграете. Жестокая шутка — в одну из самых популярных игр в истории невозможно выиграть, вас всегда будет ожидать провал. Но это не помешало тетрису стать частью поп-культуры и одной из самых узнаваемых и популярных игр в истории.

    В видео ниже более подробно рассказывается об истории тетриса и причинах 100% проигрыша, вне зависимости от ваших действий.



    Via engadget.
    Support the author
    Share post
    AdBlock has stolen the banner, but banners are not teeth — they will be back

    More
    Ads

    Comments 43

    • UFO just landed and posted this here
        +3
        Ну, чисто гипотетически, если уж не «пройти», то хотя бы играть бесконечно, т.е. существовал бы вариант развития событий, при котором время партии стремилось к бесконечности. А тут 100% луз энивей. :(
          +2
          Losing is Fun! © Dwarf Fortress
            +5
            Тогда уж надо говорить не «выиграть невозможно», а «невозможно не проиграть»
              0
              Я одно время очень сильно угарал по тетрису (в варианте Tetris DS), и смог доиграть до «надоело» – 200+ уровень.

              Во многих современных тетрисах можно поворачивать фигуру когда она уже касается чего-то (например приём T-spin, когда T буквально вкручивается в дырку), так и «катать» фигуру по поверхности постройки до определенного положения.
                –1
                Полагаю в вашей версии просто не было ускорения падения фигурок.
            0
            Или играть до переполнения счетчика :)
              +2
              Я знаю как минимум три тетриса, которые можно пройти, и два из них — это самые популярные его версии.

                +2
                Ахахах. Тоже об этом вспомнил, когда читал статью)))
              +3
              … фактически, вошедшая в зал Вечной Славы геймдева, если представить, что такой существует.
              Что значит если представить?
                +6
                Т.е. вы считаете, что вот ЭТО топ-5 игростроя? Особенно Топ-2 радует.

                image

                К зельде, марио и покемонам претензий нет.
                  +4
                  Позвольте, но… я-то тут при чем? Вы меня прямо в тупик поставили.

                  Я всего лишь отметил, что такой Зал Славы существует. На базе музея, которому без малого 50 лет. Придерживается собственых критериев отбора лучших экспонатов.

                  А вы в меня тыкаете опросом с главной страницы.

                  P.S.
                  Про Sims согласен.
                +6
                Это всё враки, там мультик в конце показывают!
                  +17
                  Это вы с волком и яйцами путаете
                  0
                  Так в этом же самая прелесть — нельзя уткнуться в потолок количества очков, на котором игра сдастся раньше, чем играющий.
                    –3
                    Игра «Электроника » — где мультики в конце ).
                    Приставка «Денди» + Марио + черепашки ниндзя (иногда на черно-белом телике, но это вообще не смущало)
                    И тетрис в классическом варианте.
                    = Вот это было здорово. И ни надо было ни CS, Half-Life и тд.
                      +1
                      Можно вкратце объяснить для тех, кто не может посмотреть видео, почему рано или поздно проигрыш неизбежен?
                      В статье самое интересно не рассказано.
                      • UFO just landed and posted this here
                          0
                          Хм… но ведь все дело упирается в то, является ли сгенерированная генератором псевдослучайных чисел последовательность фигурок разрешимой с точки зрения правил игры. Тогда получаем, что вполне можно подобрать последовательность ПСЧ, при которой стакан не будет заполняться например больше, чем на 3 слоя и партия сможет длиться бесконечно.
                          • UFO just landed and posted this here
                              +1
                              Ну, вполне может быть последовательность ПСЧ, когда «Z» вообще не выпадает ;) Грубо говоря, если ГПСЧ выдает какую-то циклическую последовательность, для которой цикл заканчивается полностью очищенным экраном, то теоретически партия может продолжаться бесконечно. На а на практике скорость реакции ограничивается только стеенью упоротости игрока)
                        0
                        В принципе получается, что максимальное возможное кол-во очков в заранее известно (за ~70 000 ходов).
                        То есть выиграет тот, кто сможет их набрать, вот вам и конец и цель игры, в новой интерпретации конечно.
                          +2
                          Начать с того, что из 7 фигур тетриса НЕВОЗМОЖНО собрать моноблок со стороной 8: 4*7=28. Кроме того, в «классической» версии игрок видит не только текущую фигуру, но и следующую, что значительно упрощает «упаковку».
                          Так что в доказательство не верю.
                          А опытные игроки так вообще играли, стартуя с наполовину заполненного стакана. Разобрал до дна — считай вииграл, дальше было неинтересно
                            +1
                            Вот есть статья, где подробно написано, почему рано или поздно Вы проиграете.

                            Если вкратце, то когда-нибудь наступит такой момент, что Вам будут попадаться только Z или только S в течении долго времени и вот тут-то окажется, что они заполонят все без возможности убрать хоть одну линию. Конечно до такого момента играть придется очень долго, но тем не менее.
                              +3
                              Прочитал, действительно, беру свои слова обратно. 69600 тетрамин в спец-версии тертиса (только из прямых и обратных Z) или 127200 Z-тетрамин из любого расклада (а значит, из классической версии тетриса) неизбежно приводят к проигрышу. Поскольку в бесконечной последовательности обязательно выпадет последовательность из 127200 Z, то бесконечная игра неизбежно проигрышная.
                              Но тут сразу возникает вопрос для исследования:
                              Тетрис — это компьютерная игра, и для её генерации используется некий детерминированный ДСЧ. Понятно, что можно взять «плохой» генератор, выдающий только Z, но в такую игру играть никто не будет. Предположим, что это все-таки ДСЧ с равномерным распределением, котором фигура z-типа выпадает с вероятностью 2/7. И второе предположение — там не используются большие таблицы (во времена изобретения тетриса с памятью было туго).
                              Скорее всего, в оригинальной версии использовался просто линейный генератор, с циклом длиной P, где P — некое большое протое число, и о бесконечных последовательностях речь не идет.
                              К чему клоню. В принципе, можно ли было на 8/16 битных процессорах построить детерминированный ГСЧ с равномерным распределением, но в котором компьютер неизбежно выигрывает?
                                0
                                О чем-то подобном я тоже задумался, когда оставил комментарий. Возможно и нет. А можно вообще в программе прописать вместо случайного выбора следующей фигуры взять, например 10 наборов фигур и перемешать список, как он закончится — опять перемешать и начать заново. В таком случае подобная ситуация заведомо невозможно.

                                Но статья конечно же про идеальную реализацию тетриса в вакууме с честным ГСЧ.
                            +1
                            Играл.
                            Уперся в ограничение на максимально количество очков при бешеной скорости падения фигур.
                            Продержался еще несколько фигур слушая 8-битную «Калинку».
                            Был удивлен, впечатлён и разочарован. Больше не играл.
                              –7
                              А в чем собственно смысл этой игры?
                              Ни графики, ни сюжета…
                                +18
                                — Бесконечная* песочница
                                — Полностью разрушаемое окружение**
                                — Абсолютно непредсказуемые повороты сюжета, игра каждый раз преподносит сюрпризы
                                — Легкость освоения
                                — Полная версия, без платных DLC!
                                — Миллионы фанатов по всему миру

                                * см. статью
                                ** кроме технологического бортика
                                +5
                                Все зависит от реализации и тренировки :)

                                Японцы, например, во что угодно могут выиграть
                                Пруф: www.youtube.com/watch?v=H_tmFUWu9bI
                                  +1
                                  Один вопрос. КАК, ***ть???
                                  0
                                  Helloween — The Game Is On
                                  :)
                                    0
                                      0
                                      Короче, тетрис всех выиграл! Я всегда это знал!

                                        –1
                                        А ведь я как-то на древнем телефоне из-за дикой скуки прошёл змейку)
                                          +2
                                          Есть видео окончания игры на GameBoy (если набрать 999999 очков). В конце ВНЕЗАПНО выясняется, что мы все это время строили советскую ракету и она гордо улетает ввысь. Я думаю, это было крутым сюжетным поворотом для того времени.
                                          youtu.be/keeSEJG4XzU?t=31m43s
                                            0
                                            А вот и мультик!
                                            +3
                                            Чак Норрис смог бы.

                                              +2
                                              Удивительно, что именно в стране, где придумали Тетрис, про него так мало знают.
                                                0
                                                Невозможно выиграть в бесконечную игру? Да ладно! Вы ещё скажите что в Ну, погоди! невозможно выиграть.
                                                У меня как-то раз глюканул тетрис и выдавал только вертикальную палку. Играл пока не надоело.
                                                Ну и для всего есть предел, как минимум переполнение счётчика очков.
                                                  0
                                                  Какой-то странный вывод. Фигурки рожает генератор случайных чисел. Чисто теоретически он может начать игру, выдав 10 палок. Как умостить 10 палок в стакан шириной 10 клеток, чтобы последним ходом очистить весь стакан, — надо объяснять?
                                                  Аналогично, 10 Г, 10 L, 5 Г и 5 L в любом порядке.

                                                  И так — 7 тысяч раз. Очень маловероятно, но не невероятно же.

                                                  Имхо, это будет выигрыш. Или авторы подразумевают под выигрышем нечто совсем другое?
                                                    0
                                                    Сама суть спора во фразе «примерно за 70 000 ходов». Это сколько? 9 миллионов ходов это «примерно 70 000 ходов»?

                                                    Статистически, вероятность экспоненциально будет уменьшаться с 70 000, но нулю она равна быть не может.

                                                    Only users with full accounts can post comments. Log in, please.