Тренд на использование больших языковых моделей (LLM) не ослабевает, но облачные решения вроде ChatGPT или Gemini имеют ряд ограничений: зависимость от интернета, платные подписки и, что самое важное, конфиденциальность данных. Особенно остро последний вопрос стоит при работе с корпоративной или чувствительной информацией, которую нельзя загружать в чужие сервисы.
В этой статье я хочу поделиться опытом создания полностью локального AI-ассистента на основе Microsoft Phi-3-mini — компактной, но мощной модели, способной анализировать данные из CSV, JSON и TXT файлов. Весь проект представляет собой набор Python-скриптов с открытым исходным кодом, которые автоматизируют установку и предоставляют интуитивно понятный чат-интерфейс.
Почему Phi-3-mini?
Microsoft позиционирует семейство моделей Phi-3 как "достаточно маленькие" (Small Language Models), но при этом "достаточно умные". Phi-3-mini, обладая 3.8 миллиардами параметров, демонстрирует производительность, сопоставимую с моделями вроде Mixtral 8x7B и GPT-3.5, но в значительно меньшем размере. Это делает её идеальным кандидатом для локального запуска на потребительском железе.
Компактность: ~7-8 ГБ против десятков и сотен ГБ у более крупных моделей.
Эффективность: Оптимизирована для работы на GPU с ограниченными ресурсами.
Качество: Поддерживает контекст до 4K токенов и отлично справляется с логическими и аналитическими задачами, включая код.