Search
Write a publication
Pull to refresh
0
@Alex643read⁠-⁠only

User

Send message

Бутстрап временных рядов

Reading time19 min
Views7.5K

Всем привет! Как и во многих других компаниях, в X5 существует огромное количество данных, зависящих от времени. Такие данные принято называть временными рядами (time-series). Это могут быть данные о продажах в магазинах, об остатках на складах или об удовлетворенности клиентов. Используя эти данные, мы хотим искать инсайты и приносить пользу бизнесу.

Бутстрап является ценным инструментом — он позволяет генерировать множество синтетических выборок из исходных данных, на основе которых мы можем оценить распределение интересующей нас статистики и построить доверительные интервалы. Например, если нужно определить доверительный интервал для медианы или какого-то другого квантиля предсказаний, бутстрап позволяет это сделать, даже когда прямое аналитическое вычисление невозможно.

Для временных рядов бывает полезно оценить границы, в которых находятся параметры модели, из которой получен ряд. Кроме того, часто необходимо посчитать доверительный интервал, в котором находятся предсказания для объекта с использованием моделей машинного обучения. Однако обычные методы бутстрапа не подойдут для временных рядов, так как они не учитывают структуру таких данных.

В нашем обзоре мы рассмотрим, как различные модификации метода бутстрапа учитывают структурные особенности и зависимости в данных временных рядов. Особое внимание будет уделено объяснению, почему нельзя применять стандартный подход бутстрапа к временным рядам без учёта их структуры. Затем мы перейдем к обзору методов, которые позволяют эффективно решить эту проблему.

Читать далее

Методы оптимизации в машинном и глубоком обучении. От простого к сложному

Level of difficultyHard
Reading time29 min
Views25K

В данной статье представлен обзор различных популярных (и не только) оптимизаторов, которые применяются в машинном и глубоком обучении, в частности для обучения нейронных сетей. Мы рассмотрим их основную идею и ключевые особенности, переходя от простых к более сложным концепциям. Помимо этого, в самом конце вы сможете найти большое количество дополнительных источников для более детального ознакомления с материалом.

Читать далее

Тест-драйв PyTorch 2.0 и заглядываем под капот «двушки»

Level of difficultyMedium
Reading time15 min
Views8.9K

Привет, Хабр!

На связи участники профессионального сообщества NTA Рощупкин Богдан, Сахоненко Егор и Алёшин Максим.

В посте мы рассмотрим, насколько эффективен torch.compile() на практике, заглянем под капот «двушки» PyTorch 2.0, чтобы узнать, как работает этот метод и какие преимущества он дает.

Разработчики PyTorch заявляют, что torch.compile() может дать прирост производительности до 50% по сравнению с обычным кодом PyTorch. Для проверки этого заявления мы проведем ряд экспериментов на разных моделях и данных, выясним, есть ли реальная выгода от использования torch.compile().

Заглянуть под капот

Введение в машинное обучение с tensorflow

Reading time12 min
Views199K
Если мы в ближайшие пять лет построим машину с интеллектуальными возможностями одного человека, то ее преемник уже будет разумнее всего человечества вместе взятого. Через одно-два поколения они попросту перестанут обращать на нас внимание. Точно так же, как вы не обращаете внимания на муравьев у себя во дворе. Вы не уничтожаете их, но и не приручаете, они практически никак не влияют на вашу повседневную жизнь, но они там есть.
Сет Шостак

Введение.


Серия моих статей является расширенной версией того, что я хотел увидеть когда только решил познакомиться с нейронными сетями. Он рассчитан в первую очередь на программистов, желающих познакомится с tensorflow и нейронными сетями. Уж не знаю к счастью или к сожалению, но эта тема настолько обширна, что даже мало-мальски информативное описание требует большого объёма текста. Поэтому, я решил разделить повествование на 4 части:

  1. Введение, знакомство с tensorflow и базовыми алгоритмами (эта статья)
  2. Первые нейронные сети
  3. Свёрточные нейронные сети
  4. Рекуррентные нейронные сети

Изложенная ниже первая часть нацелена на то, чтобы объяснить азы работы с tensorflow и попутно рассказать, как машинное обучение работает впринципе, на примере tensorfolw. Во второй части мы наконец начнём проектировать и обучать нейронные сети, в т.ч. многослойные и обратим внимание на некоторые нюансы подготовки обучающих данных и выбора гиперпараметров. Поскольку свёрточные сети сейчас пользуются очень большой популярность, то третья часть выделена для подробного объяснения их работы. Ну, и в заключительной части планируется рассказ о рекуррентных моделях, на мой взгляд, — это самая сложная и интересная тема.
Читать дальше →

Лучшие пакеты для машинного обучения в R, часть 1

Reading time5 min
Views19K
Один из наиболее частых вопросов, с которыми сталкиваются специалисты по обработке и анализу данных — «Какой язык программирования лучше всего использовать для решения задач, связанных с машинным обучением?» Ответ на этот вопрос всегда приводит к сложному выбору между R, Python и MATLAB. Вообще говоря, никто не может дать объективный ответ, какой же язык программирования лучше. Конечно, язык, который вы выбираете для машинного обучения, зависит от ограничений конкретной задачи и данных, предпочтений самого специалиста и тех методов машинного обучения, которые нужно будет применить. Согласно опросу о любимом инструменте пользователей Kaggle для решения задач анализа данных R предпочитают 543 из 1714.

Сейчас в CRAN доступен 8341 пакет. Кроме CRAN, есть и другие репозитории с большим количеством пакетов. Синтаксис для установки любого из них прост: install.packages(“Name_Of_R_Package”).

Вот несколько пакетов, без которых вы вряд ли обойдетесь, как специалист по анализу данных: dplyr, ggplot2, reshape2. Безусловно, это не полный список. В этой статье мы подробнее остановимся на пакетах, применяемых в машинном обучении.
Читать дальше →

Лучшие пакеты для машинного обучения в R, часть 2

Reading time6 min
Views11K
Один из наиболее частых вопросов, с которыми сталкиваются специалисты по обработке и анализу данных — «Какой язык программирования лучше всего использовать для решения задач, связанных с машинным обучением?» Ответ на этот вопрос всегда приводит к сложному выбору между R, Python и MATLAB. Вообще говоря, никто не может дать объективный ответ, какой же язык программирования лучше. Конечно, язык, который вы выбираете для машинного обучения, зависит от ограничений конкретной задачи и данных, предпочтений самого специалиста и тех методов машинного обучения, которые нужно будет применить. Согласно опросу о любимом инструменте пользователей Kaggle для решения задач анализа данных R предпочитают 543 из 1714.

Сейчас в CRAN доступен 8341 пакет. Кроме CRAN, есть и другие репозитории с большим количеством пакетов. Синтаксис для установки любого из них прост: install.packages(“Name_Of_R_Package”).

Вот несколько пакетов, без которых вы вряд ли обойдетесь, как специалист по анализу данных: dplyr, ggplot2, reshape2. Безусловно, это не полный список. В этой статье мы подробнее остановимся на пакетах, применяемых в машинном обучении.
Читать дальше →

Глубокое обучение с R и Keras на примере Carvana Image Masking Challenge

Reading time18 min
Views14K


Привет, Хабр!

Пользователи R долгое время были лишены возможности приобщиться к deep learning-у, оставаясь в рамках одного языка программирования. С выходом MXNet ситуация стала меняться, но своеобразная документация и частые изменения, ломающие обратную совместимость, все еще ограничивают популярность данной библиотеки.

Гораздо привлекательнее выглядит использование R-интерфейсов к TensorFlow и Keras с бекендами на выбор (TensorFlow, Theano, CNTK), подробной документацией и множеством примеров. В этом сообщении будет разобрано решение задачи сегментации изображений на примере соревнования Carvana Image Masking Challenge (победители), в котором требуется научиться отделять автомобили, сфотографированные с 16 разных ракурсов, от фона. "Нейросетевая" часть полностью реализована на Keras, за обработку изображений отвечает magick (интерфейс к ImageMagick), параллельная обработка обеспечивается parallel+doParallel+foreach (Windows) или parallel+doMC+foreach (Linux).

Читать дальше →

Quick Draw Doodle Recognition: как подружить R, C++ и нейросетки

Reading time32 min
Views6.9K


Привет, Хабр!

Осенью прошлого года на Kaggle проходил конкурс по классификации нарисованных от руки картинок Quick Draw Doodle Recognition, в котором среди прочих поучаствовала команда R-щиков в составе Артема Клевцова, Филиппа Управителева и Андрея Огурцова. Подробно описывать соревнование не будем, это уже сделано в недавней публикации.

С фармом медалек в этот раз не сложилось, но было получено много ценного опыта, поэтому о ряде наиболее интересных и полезных на Кагле и в повседневной работе вещей хотелось бы рассказать сообществу. Среди рассмотренных тем: нелегкая жизнь без OpenCV, парсинг JSON-ов (на этих примерах рассматривается интеграция кода на С++ в скрипты или пакеты на R посредством Rcpp), параметризация скриптов и докеризация итогового решения. Весь код из сообщения в пригодном для запуска виде доступен в репозитории.

Содержание:


  1. Эффективная загрузка данных из CSV в базу MonetDB
  2. Подготовка батчей
  3. Итераторы для выгрузки батчей из БД
  4. Выбор архитектуры модели
  5. Параметризация скриптов
  6. Докеризация скриптов
  7. Использование нескольких GPU в облаке Google Cloud
  8. Вместо заключения
Читать дальше →

Каким может быть стек технологий для торговли опционами на Московской бирже

Reading time7 min
Views24K


В блоге на Хабре мы много пишем об использующемся для работы на фондовом рынке железе и софте. Не так давно мы рассматривали стек технологий для высокочастотной торговли, а сегодня речь пойдет о том, какие инструменты можно использовать для торговли опционами на Московской бирже. Материал на эту тему написал эксперт ITinvest Олег Мубаракшин.
Читать дальше →

R и Информационная безопасность. Как устранить противоречие интересов и запустить R на Linux в оффлайн-режиме

Reading time5 min
Views3.5K

Является продолжением предыдущих публикаций.


Очень часто попытки применить инструменты DataScience в корпоративной среде встают в полное противоречие с требованиями Службы Информационной Безопасности (СИБ). В мире DataScience рекомендация «поставь с гитхаба» становится практически нерешаемой при полной изоляции аналитической машины от интернета. Тем не менее, задача запуска на linux инфраструктуры R в offline окружении вполне решаемая. Ниже приведу последовательность мантр, которые позволят это исполнить. Если какие-то шаги будут не совсем прозрачными, то скорректирую по мере появления комментариев. Эти же шаги можно использовать и для online инсталляции, пропуская шаги, относящиеся к хитрым трюкам или созданию локальных репозиториев. Собрано по крупицам на основании многократных инсталляций под разнообразные задачи. Практика показала, что тема весьма актуальна.


Читать дальше →

Экосистема R как инструмент для автоматизации бизнес-задач

Reading time7 min
Views12K
Настоящая статья является продолжением предыдущей публикации «Инструменты DataScience как альтернатива классической интеграции ИТ систем». Основная цель — заострить внимание как разработчиков, так и руководителей среднего звена, на широком спектре возможностей, которые предоставляют современные инструменты из сферы Data Science за рамками классических задач статистических вычислений и модной нынче темы машинного обучения. В частности, возможности экосистемы R по состоянию на август 2016 года и применение этих возможностей на примере двух задач: одной из прикладной науки, другой – из среднего бизнеса.
Читать дальше →

Быстрая загрузка данных из файлов в R

Reading time3 min
Views10K
Недавно мы писали приложение на Shiny, где нужно было использовать очень большой блок данных (dataframe). Это непосредственно влияло на время запуска приложения, поэтому пришлось рассмотреть ряд способов чтения данных из файлов в R (в нашем случае это были csv-файлы, предоставленные заказчиком) и определить лучший.

Цель этой заметки — сравнить:

  1. read.csv из utils — стандартный способ чтения csv-файлов в R
  2. read_csv из readr, который в RStudio заменил предыдущий метод
  3. load и readRDS из base, и
  4. read_feather из feather и fread из data.table.
Читать дальше →

О линейной регрессии: байесовский подход к курсу рубля

Reading time9 min
Views24K


Не секрет, что курс рубля напрямую зависит от стоимости нефти (и от кое-чего еще). Этот факт позволяет строить довольно интересные модели. В своей статье о линейной регрессии я коснулся некоторых вопросов, посвященных диагностике модели, а за кадром остался такой вопрос: есть ли более эффективная, но не слишком сложная альтернатива линейной регрессии? Традиционно используемый метод наименьших квадратов прост и понятен, но есть и другие подходы (не такие понятные).

Читать дальше →

Анализ открытых данных в R, часть 1

Reading time5 min
Views15K

Введение


На момент написания статьи большинство приложений на основе открытых данных (на официальных сайтах data.mos.ru/apps и data.gov.ru) представляют собой интерактивные справочники по инфраструктуре города или поселения с наглядной визуализацией и часто с опцией выбора оптимального маршрута. Цель этой и последующих публикаций состоит в том, чтобы привлечь внимание сообщества к обсуждению стратегий анализа открытых данных, в т.ч. направленных на прогнозирование, построение статистических моделей и извлечение информации, не представленной в явном виде. В качестве инструментария используется язык R и среда разработки RStudio.
Читать дальше →

R в качестве инструмента мониторинга цен

Reading time6 min
Views18K
В данной статье хотел бы коснуться такой темы как мониторинг конкурентов. Понимаю, что у данной темы есть как много сторонников, ведь так или иначе мониторинг необходим для успешного развития почти любой компании, так и противники, которые защищают интересы своего бизнеса от мониторщиков.

Те, кто как то связан с продажами на конкурентном рынке, наверняка знают, что мониторинг конкурентов является важной задачей. Результаты используются для совершенно различных целей — от изменения локальных политик ценообразования и ведения ассортимента до составления стратегических планов развития компании. Автор решил попрактиковаться в решении данной задачи и промониторить одного из крупных ритейлеров электроники в России, чьим регулярным клиентом автор является. Что из этого вышло —
далее под катом

Нефтяные ряды в R

Reading time6 min
Views43K
«Графики цен великолепны, чтобы предсказывать прошлое»
Питер Линч



С временными рядами мне как-то не доводилось иметь дело на практике. Я, конечно, читал о них и имел некоторое представление в рамках учебного курса о том, как в общих чертах проводится анализ, но хорошо известно, что то, о чем рассказывают в учебниках по статистике и машинному обучению, не всегда отражает реальное положение дел.
Читать дальше →

Применение машинного обучения в трейдинге. Часть 2

Reading time6 min
Views21K
Примечание переводчика. Продолжаю перевод серии статей по применению машинного обучения в трейдинге. Предыдущая часть здесь. О любых ошибках и исправлениях пишите в личку.

Как использовать дерево решений для торговли акциями Bank of America.




Предположим вам нравится использовать разнообразные технические индикаторы и вы хотите создать стратегию, которая ищет конкретные высоко-вероятностные возможности на рынке. Что если значение RSI находящееся выше 85 и, одновременно, линия MACD ниже 20, означают хорошую возможность открыть короткую позицию? Вы можете потратить дни/недели/месяцы в попытках вручную просчитать все комбинации ваших индикаторов, а можете использовать дерево решений – мощный и легко интерпретируемый алгоритм.

Для начала давайте разберёмся, как работают дерева решений, затем рассмотрим их использование на примере построения стратегии торговли акциями Bank of America.
Читать дальше →

Применение машинного обучения в трейдинге

Reading time8 min
Views43K
Примечание переводчика 1. Я наткнулся на этот блог в одном из обзоров материалов по машинному обучению. Если вы хорошо разбираетесь в машинном обучении, то в этой статье вы не найдете для себя ничего интересного. Она достаточно поверхностная и затрагивает только основы. Если же вы, как и я, только начинаете интересоваться данной темой, то добро пожаловать под кат.
Примечание переводчика 2. Кода будет мало, а тот что есть написан на языке R, но не стоит отчаиваться, если вы его до сих пор никогда в глаза не видели. До этой статьи я тоже ничего о нем не знал, поэтому я специально отдельно написал «шпору» по языку, включив туда все, что вам встретится в статье. Если хотите сами разобраться, то начать рекомендую c маленького курса на CodeSchool. На хабре тоже есть интересная информация и полезные ссылки. И наконец вот тут есть большая шпаргалка.
Примечание переводчика 3. Статья из двух частей, однако самое интересное начинается только во второй части, поэтому я позволил себе объединить их в одну статью.


Часть 1


В этой серии статей, я собираюсь шаг за шагом построить и оттестировать простую стратегию управления активом, основанную на машинном обучении. Первая часть будет посвящена базовым концепциям машинного обучения и их применению к финансовым рынкам.

Машинное обучение является одним из наиболее многообещающих направлений в финансовой математике, в последние годы получившее репутацию изощренного и сложного инструмента. В действительности все не так сложно.
Читать дальше →

Несколько слов о «линейной» регрессии

Reading time5 min
Views55K
Иногда так бывает: задачу можно решить чуть ли не арифметически, а на ум прежде всего приходят всякие интегралы Лебега и функции Бесселя. Вот начинаешь обучать нейронную сеть, потом добавляешь еще парочку скрытых слоев, экспериментируешь с количеством нейронов, функциями активации, потом вспоминаешь о SVM и Random Forest и начинаешь все сначала. И все же, несмотря на прямо таки изобилие занимательных статистических методов обучения, линейная регрессия остается одним из популярных инструментов. И для этого есть свои предпосылки, не последнее месте среди которых занимает интуитивность в интерпретации модели.
Читать дальше →

Построение модели SARIMA с помощью Python+R

Reading time7 min
Views62K

Введение


Добрый день, уважаемые читатели.
После написания предыдущего поста про анализ временных рядов на Python, я решил исправить замечания, которые были указаны в комментариях, но при их исправлении я столкнулся с рядом проблем, например при построении сезонной модели ARIMA, т.к. подобной функции а пакете statsmodels я не нашел. В итоге я решил использовать для этого функции из R, а поиски привели меня к библиотеке rpy2 которая позволяетиспользовать функции из библиотек упомянутого языка.
У многих может возникнуть вопрос «зачем это нужно?», ведь проще просто взять R и выполнить всю работу в нем. Я полность согласен с этим утверждением, но как мне кажется, если данные требуют предварительной обработки, то ее проще произвести на Python, а возможности R использовать при необходимости именно для анализа.
Кроме этого, будет показано как интегрировать результаты выдачи работы функции R в IPython Notebook.
Читать дальше →
1

Information

Rating
Does not participate
Registered
Activity

Specialization

Data Scientist
Python
Pytorch
Natural language processing
Machine learning