Search
Write a publication
Pull to refresh
3
0
Святослав @Aqice

Product Owner at X5 Tech

Send message

Раскрываем тайны: как мы контролируем работу ML-моделей

Level of difficultyMedium
Reading time6 min
Views2.3K

Привет, Хабр! На связи команда ad-hoc аналитики и модельного риска X5 Tech. В прошлой статье про модельный риск мы познакомились с концепцией risk-management’а для моделей машинного обучения в корпорации и оценили, какую пользу может принести модельный риск как для команд-разработчиков и аналитиков, так и для компании в целом.

В этой статье мы продолжим тему модельного риска, раскроем чуть больше секретов о том, как это устроено в X5 Tech и обсудим некоторые технические аспекты реализации подобной системы.

Читать далее

Модельный риск: как увеличить эффективность работы ML моделей в большой компании

Level of difficultyEasy
Reading time7 min
Views3.1K

Привет, Хабр! В этой статье мы – Святослав Орешин и Александр Сахнов – попытались  разобрать достаточно специфичную для классического Data Science и критически важную для бизнеса тему – модельный риск или risk management для машинного обучения. 

Под катом говорим о том, как можно сделать машинное обучение в компании более эффективным, какие бывают риски у ML моделей и как на них реагировать, а также делимся своим опытом, как мы построили систему по модельному риску в X5 Tech – компании с сотнями ML моделей в production.

В современных компаниях машинное обучение используется повсеместно – начиная от предсказания ключевых для бизнеса показателей, до голосовых помощников на основе языковых моделей. При разработке и обучении новой модели обычно основное внимание уделяется данным, метриками, архитектуре и решаемой задачи, и только в редких случаях команда задумывается о поддержке и управлении моделями в будущем.

Читать далее

Information

Rating
Does not participate
Location
Санкт-Петербург, Санкт-Петербург и область, Россия
Date of birth
Registered
Activity