Search
Write a publication
Pull to refresh
15
0

Пользователь

Send message

Фильтрация изображения методом математической морфологии на FPGA

Reading time7 min
Views15K

В этой статье я хочу рассмотреть один, на мой взгляд, достойный внимания подход к фильтрации изображений методом математической морфологии. Про математическую морфологию написано много статей, и одна из них размещена здесь на хабре. Читателю, незнакомому с данной темой, я рекомендую сначала ознакомиться с материалом по ссылке выше.

В статье про фильтрацию изображения я рассказывал про метод фильтрации медианным фильтром. Данный фильтр показал себя очень даже неплохо, но у него есть ряд ограничений и неудобств:
громоздкий даже в реализации 3x3:

  • требует формирование оконной функции
  • очень сложен для расширения окна
  • большое запаздывание (latency) при последовательном соединении с другими оконными функциями.

Все эти неудобства нисколько не умаляют степень его применимости в цифровых системах обработки изображений, однако существует и иной подход.
Читать дальше →

Котики против нейросети. Или выбираем и запускаем нейросеть для распознавания объектов на Raspberry Zero

Reading time5 min
Views20K
Добрый день всем.

Крохотный компьютер Raspberry — замечательная вещь. Я использовал Raspberry Zero W в паре проектов в течение последнего полугода. Подкупила простота протипирования и откатки различных идей. А теперь вот факультативно заинтересовал вопрос, потянет ли сей девайс полноценную сверточную сетку? [Спойлер — потянет, но есть забавые нюансы]. Кому интересна тема — добро пожаловать под кат. Осторожно, будет много котиков!

image
Читать дальше →

Laplace Blur — Можно ли блюрить Лапласом вместо Гаусса, во сколько раз это быстрее, и стоит ли того потеря 1/32 точности

Reading time7 min
Views12K
image

«Блюр» в простонародье — эффект размытия, в цифровой обработке изображений. Бывает очень эффектен и сам по себе, и как составляющее анимаций интерфейса, или более сложных производных эффектов (bloom/focusBlur/motionBlur). При всем этом честный блюр в лоб довольно медленен. И часто реализации встроенные в целевую платформу оставляют желать лучшего. То скорость печальна, то артефакты режут глаза. Ситуация рождает множество компромиссных реализаций, лучше или хуже подходящих для определенных условий. Оригинальная реализация с хорошим качеством достоверности и высочайшей скоростью, при этом нижайшей зависимостью от аппаратной части ждет вас под катом. Приятного аппетита!
Читать дальше →

Доступно о кватернионах и их преимуществах

Reading time13 min
Views247K

От переводчика: ровно 175 лет и 3 дня назад были изобретены кватернионы. В честь этой круглой даты я решил подобрать материал, объясняющий эту концепцию понятным языком.

Концепция кватернионов была придумана ирландским математиком сэром Уильямом Роуэном Гамильтоном в понедельник 16 октября 1843 года в Дублине, Ирландия. Гамильтон со своей женой шёл в Ирландскую королевскую академию, и переходя через Королевский канал по мосту Брум Бридж, он сделал потрясающее открытие, которое сразу же нацарапал на камне моста.

$i^2=j^2=k^2=ijk=-1$




Памятная табличка на мосту Брум Бридж через Королевский канал в честь открытия фундаментальной формулы умножения кватернионов.

В этой статье я постараюсь объяснить концепцию кватернионов простым для понимания образом. Я объясню, как можно визуализировать кватернион, а также расскажу о разных операциях, которые можно выполнять с кватернионами. Кроме того, я сравню использование матриц, углов Эйлера и кватернионов, а затем попытаюсь объяснить, когда стоит использовать кватернионы вместо углов Эйлера или матриц, а когда этого делать не нужно.
Читать дальше →

Python Tips, Tricks, and Hacks (часть 2)

Reading time6 min
Views134K
Содержание

Списки. Свёртка списка (reduce). Прохождение по списку (range, xrange и enumerate). Проверка всех элементов списка на выполнение условия (all и any). Группировка элементов нескольких списков (zip). Еще несколько операторов для работы со списками. Продвинутые логические операции с типом set.
Словари. Создание словаря с помощью именованных аргументов. Преобразование словаря в список и обратно. «Dictionary Comprehensions».
Читать дальше →

Как не надо писать код

Reading time4 min
Views37K

image


Готовы погрузиться с головой в дивный мир программирования? Хотите узнать как непредсказуемо могут повести себя несколько простых строк кода?


Если ваш ответ "Да!" — добро пожаловать под кат.


Вас будут ждать несколько занимательных задачек на С или С++.


Правильный ответ с объяснением всегда будет спрятан под спойлером.


Удачи!

Читать дальше →

Сглаживание цифровых сигналов

Reading time12 min
Views95K

Введение


Данную статью меня заставил написать пост habrahabr.ru/post/183986, где не совсем правильно используется некоторый алгоритм сглаживания изображения.

Сразу перейдём к сути дела.

Математические модели цифровых сигналов — вектора и матрицы, элементами которых являются числа. Числа могут быть двоичными (бинарный сигнал), десятичными («обычный» сигнал) и так далее. Любой звук, любое изображение и видео могут быть преобразованы в цифровой сигнал1: звук — в вектор, изображение — в матрицу, а видео — в последовательный набор матриц. Поэтому цифровой сигнал — это, можно сказать, универсальный объект для представления информации.

Задача сглаживания — это, по сути, задача фильтрации сигнала от скачкообразных (ступенчатых) изменений. Считается, что полезный сигнал их не содержит. Ступенчатый сигнал за счёт множества резких, но небольших по амплитуде, перепадов уровня содержит высокочастотные составляющие, которых нет в сглаженном сигнале. Поэтому для некоторого алгоритма сглаживания в первую очередь необходимо определить как сильно ослабляются разные частотные составляющие. Другими словами, необходимо построить амплитудно-частотную характеристику соответствующего фильтра, иначе велика вероятность «нарваться» на артефакты.

Задача сглаживания может использоваться при прореживании сигналов, то есть когда, например, необходимо отобразить большую картинку на небольшой экран. Или когда частота дискретизации звука снижается, например, с 48000 Гц до 44100 Гц. Понижение частоты выборок — коварная операция, требующая предварительной обработки сигнала (низкочастотной фильтрации), но это — тема отдельного разговора…

Приведём пример «плохого» сглаживания


Казалось бы, обычное усреднение и сигнал на выходе должен быть «гладким». Но как определить, насколько он стал «глаже»? Не переборщили ли мы? А может быть некоторые коэффициенты выбрать не по 1/3? А может быть усреднить по пяти точкам? Как определить насколько ослабляются частотные составляющие в сигнале? Как найти свой (то есть для конкретной задачи) оптимум?
На эти и некоторые другие вопросы я постараюсь ответить так, чтобы «обычный» программист смог обосновать свой алгоритм, — надеюсь, не только алгоритм на тему «Сглаживание», так как идеи будут излагаться весьма общие, заставляющие думать самому
Читать дальше →

Спектральный анализ сигналов

Reading time8 min
Views294K
image

Не так давно товарищ Makeman описывал, как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.
Читать дальше →

Простыми словами о преобразовании Фурье

Level of difficultyMedium
Reading time14 min
Views1.1M
Я полагаю что все в общих чертах знают о существовании такого замечательного математического инструмента как преобразование Фурье. Однако в ВУЗах его почему-то преподают настолько плохо, что понимают как это преобразование работает и как им правильно следует пользоваться сравнительно немного людей. Между тем математика данного преобразования на удивление красива, проста и изящна. Я предлагаю всем желающим узнать немного больше о преобразовании Фурье и близкой ему теме того как аналоговые сигналы удается эффективно превращать для вычислительной обработки в цифровые.

image (с) xkcd

Без использования сложных формул и матлаба я постараюсь ответить на следующие вопросы:
  • FT, DTF, DTFT — в чем отличия и как совершенно разные казалось бы формулы дают столь концептуально похожие результаты?
  • Как правильно интерпретировать результаты быстрого преобразования Фурье (FFT)
  • Что делать если дан сигнал из 179 сэмплов а БПФ требует на вход последовательность по длине равную степени двойки
  • Почему при попытке получить с помощью Фурье спектр синусоиды вместо ожидаемой одиночной “палки” на графике вылезает странная загогулина и что с этим можно сделать
  • Зачем перед АЦП и после ЦАП ставят аналоговые фильтры
  • Можно ли оцифровать АЦП сигнал с частотой выше половины частоты дискретизации (школьный ответ неверен, правильный ответ — можно)
  • Как по цифровой последовательности восстанавливают исходный сигнал


Я буду исходить из предположения что читатель понимает что такое интеграл, комплексное число (а так же его модуль и аргумент), свертка функций, плюс хотя бы “на пальцах” представляет себе что такое дельта-функция Дирака. Не знаете — не беда, прочитайте вышеприведенные ссылки. Под “произведением функций” в данном тексте я везде буду понимать “поточечное умножение”

Итак, приступим?

Реализация узла БПФ с плавающей точкой на ПЛИС

Reading time17 min
Views34K
Всем привет! В этой статье речь пойдет о реализации быстрого преобразования Фурье в формате с плавающей точкой на ПЛИС. Будут показаны основные особенности разработки ядра от самой первой стадии до готового конфигурируемого IP-ядра. В частности, будет проведено сравнение с готовыми ядрами фирмы Xilinx, показаны преимущества и недостатки тех или иных вариантов реализации. В статье будет рассказано о главной особенности ядра БПФ и ОБПФ — об отсутствии необходимости переводить данные в натуральный порядок после БПФ и ОБПФ для их совместной связки. В этой статье я постараюсь отразить всё тонкости реализации проекта под названием FP23FFTK, приведу реальные примеры использования готового ядра. Проект написан на языке VHDL и заточен под FPGA фирмы Xilinx последних семейств.


Читать дальше →

Проектирование синхронных схем. Быстрый старт с Verilog HDL

Reading time8 min
Views137K
На просторах рунета можно найти достаточно много статей с введением в Verilog HDL. Все они описывают синтаксис и семантику языка, но, к сожалению, не раскрывают основных парадигм, используемых при проектировании цифровых схем. Представьте себе, что вам объясняют синтаксис языка Java, но не рассказывают ничего про объектно-ориентированное проектирование. Если вы знакомы с ООП, то такого введения будет достаточно, но если вы знаете только Си, то писать скорей всего будете “по-старому”, создавая огромные классы со сложными методами.

Примерно так происходит с программистами, изучающими цифровую схемотехнику и языки описания аппаратуры. Быстро разобравшись с несложным синтаксисом языка, они начинают описывать конструкции, безумные с точки зрения хардверного инженера. Среди моих студентов встречались люди, написавшие “сортировку пузырьком” за такт, сумасшедшие асинхронные схемы, которые работали по-разному при каждом запуске и разной погоде за окном, огромные комбинационные делители, уводившие place&route в глубокую многочасовую задумчивость.

Для тех, у которых нет времени прочитать учебник для начинающих, но есть желание или
необходимость спроектировать несколько простых схем я решил написать это небольшое введение об основной современной парадигме проектирования цифровых схем – синхронных схемах. И об одном из языков, используемых для их описания.
Статья рассчитана на новичков. Для понимания текста потребуется минимальный набор знаний – понимание работы синхронного D-триггера и вентилей.
Читать дальше →

Шпаргалки для тех, кто делает первые шаги

Reading time1 min
Views31K


На картинке фрагмент отличной шпаргалки, где собраны основные электронные компоненты — их внешний вид и обозначения на принципиальных схемах.

Шпаргалка по электронным компонентам (PDF, 168Kb)
Шпаргалка по контроллерам AVR (ч.1) (PDF, 61Kb)
Шпаргалка по контроллерам AVR (ч.2) (PDF, 61Kb)

PS: Там же, на сайте, имеется любопытный блог с описанием эффектных электронных поделок. Культура исполнения на высоте, приведены ссылки на open source прошивки.

Аналого-цифровое преобразование для начинающих

Reading time8 min
Views612K
В этой статье рассмотрены основные вопросы, касающиеся принципа действия АЦП различных типов. При этом некоторые важные теоретические выкладки, касающиеся математического описания аналого-цифрового преобразования остались за рамками статьи, но приведены ссылки, по которым заинтересованный читатель сможет найти более глубокое рассмотрение теоретических аспектов работы АЦП. Таким образом, статья касается в большей степени понимания общих принципов функционирования АЦП, чем теоретического анализа их работы.

"

Введение

В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Однако, для определенности, в дальнейшем под АЦП мы будем понимать исключительно преобразователи напряжение-код.

Читать дальше →

Контакт есть, сигнала нет

Reading time21 min
Views151K

или как рассогласованные линии портят ваш сигнал


На форуме Dangerous Prototypes я однажды принял участие в одном обсуждении, посвященном проблемам с шиной SPI, кторая переставала нормально работать, начиная с некоторой длины. Мой опыт подсказывал мне две вещи: 1) проверить источник питания, 2) проверить линию на наличие отражений. Тогда я понял, что это должно быть общей проблемой для всех радиолюбителей. Линии передачи данных — сложная тема, и настало время снять покров таинственности с этой электронной магии.
Читать дальше →

Заметки по окончании курса 6.002 MITx

Reading time6 min
Views23K
С 5 марта по 10 июня мной был пройден дистанционный курс обучения Массачусетского технологического института по программе 6.002 MITx «Circuits and electronics».



Зарегистрировался из чистого интереса. Не был уверен в том, что найду время, справлюсь с английским и т.д. Но затянуло. Курс оказался настолько проработанным и интересным, что я отложил все дела и снова стал студентом.
Читать дальше →

Исследование процессора и его функциональная симуляция

Reading time6 min
Views53K


Наверное каждый программист ASM / C / C++ когда-то задумывался о написании своей собственной операционной системы.

И наверное каждый разработчик Verilog / VHDL для ПЛИС когда нибудь задумывался о создании своего процессора.

Собственно реализовать более-менее традиционный процессор на сегодняшний день кажется не очень и большая проблема. Принципы работы процессоров описаны во многих книгах и статьях. Кроме того, существует много процессоров с открытой архитектурой вроде openRISC или openSPARC и многие другие. Их вполне можно рассмотреть перед тем как изобретать свой велосипед.

Я решил поизучать ARM совместимый процессор AMBER. Его исходники есть на http://opencores.org.
Читать дальше →

Уроки по электрическим цепям — линии передачи

Reading time10 min
Views251K
Ещё не начав читать статью, попробуйте подумать над вопросом: побежит ли ток, если подключить к батарейке очень длинный провод(более чем 300 тысяч километров, сверхпроводник), если противоположные концы провода никуда не подключены? Сколько Ампер?

Прочитав эту статью, вы поймёте в чём смысл волнового сопротивления. Из лекций по теории волн я вынес только то, что волновое сопротивление — это сопротивление волнам. Большая часть студентов, кажется, поняла ровно то же самое. То есть ничего.

Эта статья — весьма вольный перевод этой книги: Lessons In Electric Circuits
Статьи по теме: На Хабре: Контакт есть, сигнала нет
Трэш в Википедии: Длинная линия

Читать дальше →

Уроки по электрическим цепям — линии передачи, часть 2

Reading time9 min
Views92K


Эта статья — перевод. Начало здесь.
Источник.

В программе:
1) Провода болтаются в воздухе, но источник тока/напряжения видит короткое замыкание.
2) На одном конце провода амплитуда равна 0 Вольт, а на другом — 1 Вольт. Как это возможно?
3) Согласование 75 Ом источника сигнала с 300 Ом нагрузкой при помощи правильно подобранного кабеля.

Стоячие волны и резонанс


Всегда, когда есть несоотвествие между сопротивлением линии передачи и нагрузкой, происходит отражение. Если падающий сигнал имеет одну частоту, то этот сигнал будет накладываться на отражённые волны, и возникнет стоячая волна.

На рисунке показано, как треугольная падающая волна зеркально отражается от открытого конца линии. Для простоты, линия передачи в этом примере показана как единая жирная линия, а не как пара проводов. Падающая волна идёт слева направо, а отражённая – справа налево.
Читать дальше →

Описание блоков памяти на языке VHDL

Reading time8 min
Views67K
В данной статье показаны основные принципы описания модулей ПЗУ и ОЗУ на языке VHDL. Статья ориентирована на начинающих. Ее цель — дать общее понятие об описании модулей памяти на языке VHDL. Примеры и иллюстрации предены для пакета Quartus II v. 9.1. Предполагается, что читатель знает как создавать проект в пакете Quartus II, проводить его компиляцию и симуляцию.
Читать дальше →

Коротенькое сравнение VHDL и Verilog в помощь начинающим знакомство с ПЛИС

Reading time4 min
Views67K
Исторически так сложилось что ПЛИС я начал изучать только на новой работе.
Это были серии ПЛИС фирмы Altera.

Старшие коллеги на перебой рекомендовали как AHDL так и VHDL для программирования этих микросхем.
В итоге я остановился на языке VHDL, поскольку он является языком высокого уровня, в отличии от ADHL.
Хоть и листинг у последнего был куда приятнее.

И я приступил к изучению всех хитростей и ограничений языка VHDL.
В итоге сошелся на мысли что конструкции языка просто ужасны, а ограничения избыточны для проектирования аппаратуры.

Приведу пример листинга из статьи «Делаем таймер или первый проект на ПЛИС».
Читать дальше →

Information

Rating
Does not participate
Location
Беларусь
Registered
Activity