Search
Write a publication
Pull to refresh
0
@Repulseread⁠-⁠only

User

Send message

Прогнозирование финансовых временных рядов с MLP в Keras

Reading time10 min
Views81K

image
Всем привет! В этой статье я хочу рассказать про базовый пайплайн в прогнозировании временных рядов с помощью нейронных сетей, в данном случае, наверное, с самыми сложными временными рядами для анализа — финансовыми данными, которые имеют случайную природу, и, казалось бы, непредсказуемые. Или все-таки нет?

Читать дальше →

Полное практическое руководство по Docker: с нуля до кластера на AWS

Reading time39 min
Views1.8M



Содержание



Вопросы и ответы


Что такое Докер?


Определение Докера в Википедии звучит так:


программное обеспечение для автоматизации развёртывания и управления приложениями в среде виртуализации на уровне операционной системы; позволяет «упаковать» приложение со всем его окружением и зависимостями в контейнер, а также предоставляет среду по управлению контейнерами.



Ого! Как много информации.

Читать дальше →

Алгоритм Джонкера-Волгенанта + t-SNE = супер-сила

Reading time9 min
Views32K
До:



После:



Заинтригованы? Но обо всем по порядку.

t-SNE


t-SNE — это очень популярный алгоритм, который позволяет снижать размерность ваших данных, чтобы их было проще визуализировать. Этот алгоритм может свернуть сотни измерений к всего двум, сохраняя при этом важные отношения между данными: чем ближе объекты располагаются в исходном пространстве, тем меньше расстояние между этими объектами в пространстве сокращенной размерности. t-SNE неплохо работает на маленьких и средних реальных наборах данных и не требует большого количества настроек гиперпараметров. Другими словами, если взять 100 000 точек и пропустить их через эту волшебный черный ящик, на выходе мы получим красивый график рассеяния.
Читать дальше →

Дайджест Университета ИТМО: материалы для тех, кто хочет влиться в Data Science

Reading time6 min
Views20K
Сегодня мы подготовили для вас дайджест, в котором постарались собрать самые интересные литературные источники, статьи, видеокурсы и лекции (в том числе подготовленные силами преподавателей, студентов и сотрудников Университета ИТМО), которые позволят познакомиться с Data Science.

Эти материалы затрагивают как теоретические аспекты работы с данными, так и практические — направленные на создание алгоритмов и написание программ.

Нейросеть в 11 строчек на Python

Reading time8 min
Views550K

О чём статья


Лично я лучше всего обучаюсь при помощи небольшого работающего кода, с которым могу поиграться. В этом пособии мы научимся алгоритму обратного распространения ошибок на примере небольшой нейронной сети, реализованной на Python.

Дайте код!


X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1
syn1 = 2*np.random.random((4,1)) - 1
for j in xrange(60000):
    l1 = 1/(1+np.exp(-(np.dot(X,syn0))))
    l2 = 1/(1+np.exp(-(np.dot(l1,syn1))))
    l2_delta = (y - l2)*(l2*(1-l2))
    l1_delta = l2_delta.dot(syn1.T) * (l1 * (1-l1))
    syn1 += l1.T.dot(l2_delta)
    syn0 += X.T.dot(l1_delta)


Слишком сжато? Давайте разобьём его на более простые части.
Читать дальше →

Библиотека глубокого обучения Tensorflow

Reading time16 min
Views151K

Здравствуй, Хабр! Цикл статей по инструментам для обучения нейронных сетей продолжается обзором популярного фреймворка Tensorflow.


Tensorflow (далее — TF) — довольно молодой фреймворк для глубокого машинного обучения, разрабатываемый в Google Brain. Долгое время фреймворк разрабатывался в закрытом режиме под названием DistBelief, но после глобального рефакторинга 9 ноября 2015 года был выпущен в open source. За год с небольшим TF дорос до версии 1.0, обрел интеграцию с keras, стал значительно быстрее и получил поддержку мобильных платформ. В последнее время фреймворк развивается еще и в сторону классических методов, и в некоторых частях интерфейса уже чем-то напоминает scikit-learn. До текущей версии интерфейс менялся активно и часто, но разработчики пообещали заморозить изменения в API. Мы будем рассматривать только Python API, хотя это не единственный вариант — также существуют интерфейсы для C++ и мобильных платформ.

Читать дальше →

Библиотеки для глубокого обучения Theano/Lasagne

Reading time14 min
Views46K

Привет, Хабр!


Параллельно с публикациями статей открытого курса по машинному обучению мы решили запустить ещё одну серию — о работе с популярными фреймворками для нейронных сетей и глубокого обучения.


Я открою этот цикл статьёй о Theano — библиотеке, которая используется для разработки систем машинного обучения как сама по себе, так и в качестве вычислительного бекэнда для более высокоуровневых библиотек, например, Lasagne, Keras или Blocks.


Theano разрабатывается с 2007 года главным образом группой MILA из Университета Монреаля и названа в честь древнегреческой женщины-философа и математика Феано (предположительно изображена на картинке). Основными принципами являются: интеграция с numpy, прозрачное использование различных вычислительных устройств (главным образом GPU), динамическая генерация оптимизированного С-кода.

Читать дальше →

10 способов как выделиться из толпы безликих аутсорсеров-конкурентов (с примерами)

Reading time5 min
Views17K

На конкурентом рынке разработки на заказ рынке нужно иметь изюминку, чтобы потенциальный клиент захотел написать именно вашей компании. Я собрал изюминки и сейчас расскажу о них с примерами заголовков и текстов для посадочных страниц.


image alt text


Итак, возможные преимущества, которые можно выкатывать на сайте, чтобы цеплять потенциальных клиентов:

Читать дальше →

Как правильно написать ТЗ на систему или доработку системы 1С

Reading time4 min
Views36K
Для того, чтобы Вам как заказчику, консультанту или методологу понять, что нужно разработчику 1С для того, чтобы доработать Вашу систему или разработать новую, нужно понимать, какими категориями информации он оперирует в ходе своей работы. Это сильно упростит программисту понимание того, что же от него хотят.

В данной статье я постараюсь кратко и, при этом, достаточно полно объяснить, что Вам нужно написать в техническом задании помимо общих разделов с глоссарием, титульным листом и описанием бизнес-требований.

Данные правила легко соблюдать даже при написании кратких пользовательских историй, если Вы создаете их в рамках проекта SCRUM / Agile.

Итак, приступим.
Читать дальше →

Использование Zabbix API. Когда не хватает стандартной статистики

Reading time4 min
Views70K
Возникла задача получить некоторую статистику из Zabbix, делюсь опытом получения данных из базы Zabbix через API средствами Python.


Читать дальше →

Байесовские многорукие бандиты против A/B тестов

Reading time20 min
Views68K

Здравствуйте, коллеги. Рассмотрим обычный онлайн-эксперимент в некоторой компании «Усы и когти». У неё есть веб-сайт, на котором есть красная кнопка в форме прямоугольника с закругленными краями. Если пользователь нажимает на эту кнопку, то где-то в мире мурлычет от радости один котенок. Задача компании — максимизация мурлыкания. Также есть отдел маркетинга, который усердно исследует формы кнопок и то, как они влияют на конверсию показов в клико-мурлыкания. Потратив почти весь бюджет компании на уникальные исследования, отдел маркетинга разделился на четыре противоборствующие группировоки. У каждой группировки есть своя гениальная идея того, как должна выглядеть кнопка. В целом никто не против формы кнопки, но красный цвет раздражает всех маркетологов, и в итоге было предложено четыре альтернативных варианта. На самом деле, даже не так важно, какие именно это варианты, нас интересует тот вариант, который максимизирует мурлыкания. Маркетинг предлагает провести A/B/n-тест, но мы не согласны: и так на эти сомнительные исследования спущено денег немерено. Попробуем осчастливить как можно больше котят и сэкономить на трафике. Для оптимизации трафика, пущенного на тесты, мы будем использовать шайку многоруких байесовских бандитов (bayesian multi-armed bandits). Вперед.

Читать дальше →

Второе почетное. Заметки участника конкурса Dstl Satellite Imagery Feature Detection

Reading time9 min
Views15K


Недавно закончилось соревнование по машинному обучению Dstl Satellite Imagery Feature Detection в котором приняло участие аж трое сотрудников Avito. Я хочу поделиться опытом участия от своего лица и рассказать о решении.

Нейросеть на Python, часть 2: градиентный спуск

Reading time16 min
Views60K
Часть 1

Давай сразу код!


import numpy as np
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
alpha,hidden_dim = (0.5,4)
synapse_0 = 2*np.random.random((3,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,1)) - 1
for j in xrange(60000):
    layer_1 = 1/(1+np.exp(-(np.dot(X,synapse_0))))
    layer_2 = 1/(1+np.exp(-(np.dot(layer_1,synapse_1))))
    layer_2_delta = (layer_2 - y)*(layer_2*(1-layer_2))
    layer_1_delta = layer_2_delta.dot(synapse_1.T) * (layer_1 * (1-layer_1))
    synapse_1 -= (alpha * layer_1.T.dot(layer_2_delta))
    synapse_0 -= (alpha * X.T.dot(layer_1_delta))

Часть 1: Оптимизация


В первой части я описал основные принципы обратного распространения в простой нейросети. Сеть позволила нам померить, каким образом каждый из весов сети вносит свой вклад в ошибку. И это позволило нам менять веса при помощи другого алгоритма — градиентного спуска.

Суть происходящего в том, что обратное распространение не вносит в работу сети оптимизацию. Оно перемещает неверную информацию с конца сети на все веса внутри, чтобы другой алгоритм уже смог оптимизировать эти веса так, чтобы они соответствовали нашим данным. Но в принципе, у нас в изобилии присутствуют и другие методы нелинейной оптимизации, которые мы можем использовать с обратным распространением:
Читать дальше →

Основы парсинга с помощью Python+lxml

Reading time6 min
Views193K
Добрый день, уважаемые читатели.
В сегодняшней статье я покажу основы разбора HTML разметки страниц с помощью библиотеки lxml для Python.
Если вкратце, то lxml это быстрая и гибкая библиотека для обработки разметки XML и HTML на Python. Кроме того, в ней присутствует возможность разложения элементов документа в дерево. В статье я постараюсь показать, насколько просто ее применение на практике.

Читать дальше →

Глубинное обучение по особенностям заголовка и содержимого статьи для преодоления кликбейта

Reading time6 min
Views9.1K

Облако слов для кликбейта

TL;DR: Я добился точности распознавания кликбейта 99,2% на тестовых данных по особенностям заголовка и контента. Код доступен в репозитории GitHub.

Когда-то в прошлом я написал статью о выявлении кликбейта. Та статья получила хорошие отклики, а также много критики. Некоторые сказали, что нужно учитывать содержимое сайта, другие просили больше примеров из разных источников, а некоторые предложили попробовать методы глубинного обучения.

В этой статье я постараюсь решить эти вопросы и вывести выявление кликбейта на новый уровень.
Читать дальше →

Варим ML Boot Camp III: Starter Kit

Reading time17 min
Views14K

16 марта закончилось соревнование по машинному обучению ML Boot Camp III. Я не настоящий сварщик, но, тем не менее, смог добиться 7го места в финальной таблице результатов. В данной статье я хотел бы поделиться тем, как начать участвовать в такого рода чемпионатах, на что стоит обратить внимание в первый раз при решении задачи, и рассказать о своем подходе.

Читать дальше →

Победное решение конкурса ML Boot Camp III

Reading time5 min
Views8.5K
Добрый день! В этой статье я хотел бы вкратце рассказать о решении которое принесло мне первое место на конкурсе по машинному обучению ML Boot Camp III от mail.ru.
Читать дальше →

Применение машинного обучения в трейдинге. Часть 2

Reading time6 min
Views21K
Примечание переводчика. Продолжаю перевод серии статей по применению машинного обучения в трейдинге. Предыдущая часть здесь. О любых ошибках и исправлениях пишите в личку.

Как использовать дерево решений для торговли акциями Bank of America.




Предположим вам нравится использовать разнообразные технические индикаторы и вы хотите создать стратегию, которая ищет конкретные высоко-вероятностные возможности на рынке. Что если значение RSI находящееся выше 85 и, одновременно, линия MACD ниже 20, означают хорошую возможность открыть короткую позицию? Вы можете потратить дни/недели/месяцы в попытках вручную просчитать все комбинации ваших индикаторов, а можете использовать дерево решений – мощный и легко интерпретируемый алгоритм.

Для начала давайте разберёмся, как работают дерева решений, затем рассмотрим их использование на примере построения стратегии торговли акциями Bank of America.
Читать дальше →

Предсказание курса акций с использованием больших данных и машинного обучения

Reading time9 min
Views37K
Примечание переводчика: В нашем блоге мы уже рассказывали об инструментах для создания торговых роботов и даже анализировали зависимости между названием биржевого тикера компании и успешностью ее акций. Сегодня мы представляем вашему вниманию перевод интересной статьи, авторой которой разрабатывал систему, которая анализирует изменения цен на акций в прошлом и с помощью машинного обучения пытается предсказать будущий курс акций.



Краткий обзор

Этот пост основан на статье, носящей название «Моделирование динамики высокочастотного портфеля лимитных ордеров методом опорных векторов». Грубо говоря, я ступенька за ступенькой реализую идеи, представленные в этой статье, используя Spark и Spark MLLib. Авторы используют сокращенные примеры, я же буду использовать полный журнал ордеров из Нью-Йоркской фондовой биржи (NYSE) (выборочные данные доступны на NYSE FTP), поскольку, работая со Spark, я могу легко это сделать. Вместо того, чтобы использовать метод опорных векторов, я воспользуюсь алгоритмом дерева решений для классификации, поскольку Spark MLLib изначально поддерживает мультиклассовую классификацию.

Если вы хотите глубже понять проблему и предложенное решение, вам нужно прочитать ту статью. Я же проведу полный обзор проблемы в одном или двух разделах, но менее научным языком.

Предсказательное моделирование – это процесс выбора или создания модели, целью которой является наиболее точное предсказание возможного исхода.
Читать дальше →

История 3-го места на ML Boot Camp III

Reading time5 min
Views13K
Недавно завершился контест по машинному обучению ML Boot Camp III от Mail.Ru.

Будучи новичком в machine learning мне удалось занять 3-е место. И в этой статье я постараюсь поделиться своим опытом участия.
Читать дальше →

Information

Rating
Does not participate
Registered
Activity