
В статистике тоже есть нечестный метод, который позволяет получить примерный ответ на многие практические вопросы без анализа, грубой компьютерной силой: бутстрап (англ. bootstrap). Придумал и опубликовал его в 1979 году Брэдли Эфрон.
User
Преподаватели, работающие в российских ВУЗах, периодически сталкиваются с необходимостью предоставить администрации список своих научных и учебно-методических работ. Например, для (пере)избрания на должность, присвоения звания и т. д. Формат представления информации, форма № 16, разработан невесть когда и до сих пор используется в бюрократических недрах Министерства Науки и Высшего Образования РФ. Мне стало лень заполнять эту форму вручную и я написал небольшой python сценарий, который генерирует нужную таблицу на основе информации, полученной из научной электронной библиотеки elibrary.ru. Возможно, кому-то это будет интересно, так что ниже приведено описание этой процедуры...
В этом третьем посте о моделях sequence-to-sequence с использованием PyTorch и torchText мы будем реализовывать модель из стать Neural Machine Translation by Jointly Learning to Align and Translate. Эта модель демонстрирует лучшую точность из из трёх моделей (~27 по сравнению с ~34 у предыдущей модели).
Автор статьи рассказывает, как за неделю создал Text2Art.com — генератор изображений на основе VQGAN+CLIP, способный рисовать пиксель-арт и живопись, а также изображать то, что вы напишете в текстовом поле.
Для интерфейса используется Gradio, модель работает на сервере FastAPI, а системой очереди сообщений служит Firebase. Подробностями делимся к старту курса по ML и DL.
Специалисты по анализу данных часто оценивают свои прогностические модели с точки зрения точности и погрешности, но редко спрашивают себя:
«Способна ли моя модель спрогнозировать реальные вероятности?»
Однако точная оценка вероятности чрезвычайно ценна с точки зрения бизнеса (иногда она даже ценнее погрешности). Хотите пример?
Представьте, что ваша компания продает два вида кружек: обычные белые кружки и кружки с котятами. Вам нужно решить, какую из кружек показать клиенту. Для этого нужно предсказать вероятность того, что пользовать может купить ту или другую кружку. Вы обучили пару моделей и у вас есть следующие результаты:
Работа аналитика требует постоянного пополнения своих знаний - новые инструменты, обновления и методы создаются, как горячие пирожочки. Но перерабатывать такие объемы информации просто нереально, а узнавать что-то новенькое и полезное хочется. И что делать?
Можно, конечно, подписаться на «стоковые» группы и каналы, которые каждый день публикуют по 10-20 постов с «полезным» материалом. Но, признайтесь, это просто самообман: во-первых, столько информации в день просто невозможно пропустить через себя - это только и надо, что статьи читать, а есть же еще работа/учеба. Во-вторых, «полезность» этих статей сомнительна - не каждый пост от умного индуса можно считать полезным, увы :(
Так как же быть? Ответ прост - читать авторские каналы, где реальные специалисты делятся информацией, которую они для себя считают полезной!
Итак, мы собрали для Вас большую подборку телеграм-каналов на любой вкус - каждый найдет для себя что-то интересное. Здесь и BI, и продуктовая аналитика, и программирование, и дашборды, и хранилища данных - одним словом, есть где разгуляться аналитической душе!
Сохраняйте себе и подписывайтесь на ребят - они это точно заслужили! :)
Делюсь собственным опытом, т.к., наверняка, это будет интересно таким же как я, но может и не только.
Заранее предупрежу, многие термины и сокращения будут понятны только тем, кто имеет базовые знания и какой-то опыт в Data Science и Машинном обучении.
Итак, в наличии на август 2020:
sudo apt-get install gcc python-imaging python-setuptools
sudo easy_install -U fabulous
python -m fabulous.demo - выводит в терминал примерно первое изображение
python -m fabulous.rotating_cube
— пример вращающегося кубаpython -m fabulous.image obama.jpg
— после такого вызова в терминале появится следующее изображение (как видите, чтобы вывести изображение, достаточно одной строки):Около года назад разработчики PyTorch представили сообществу TorchScript — инструмент, который позволяет с помощью пары строк кода и нескольких щелчков мыши сделать из пайплайна на питоне отчуждаемое решение, которое можно встроить в систему на C++. Ниже я делюсь опытом его использования и постараюсь описать встречающиеся на этом пути подводные камни. Особенное внимание уделю реализации проекта на Windows, поскольку, хотя исследования в ML обычно делаются на Ubuntu, конечное решение часто (внезапно!) требуется под "окошками".
Примеры кода для экспорта модели и проекта на C++, использующего модель, можно найти в репозиториии на GitHub.
В этой статье вы найдете материалы очных курсов «Deep Learning in NLP», которые запускались командой DeepPavlov в 2018-2019 годах и которые являлись частичной адаптацией Stanford NLP course — cs224n. Статья будет полезна любым специалистам, погружающимися в обработку текста с помощью машинного обучения. Благодарю физтехов, разрабатывающих открытую библиотеку для разговорного искусственного интеллекта в МФТИ, и Moryshka за разрешение осветить эту тему на Хабре в нашем ods-блоге.