Обновить
0
@crypto_userread⁠-⁠only

Пользователь

Отправить сообщение

Улучшение качества изображения с помощью нейронной сети

Время на прочтение2 мин
Охват и читатели66K
Сегодня, хочу рассказать об интересном подходе по улучшению качества изображения. Официальное название подхода Super Resolution. Улучшение качества изображения программными методами известно с начала появления цифровых снимков, но в последние 3 года произошёл качественный скачок, вызванный использованием нейронных сетей.


Пример улучшения качества изображения с использованием технологии Super Resolution.
Читать дальше →

Открытый курс машинного обучения. Тема 6. Построение и отбор признаков

Время на прочтение24 мин
Охват и читатели203K

Сообщество Open Data Science приветствует участников курса!


В рамках курса мы уже познакомились с несколькими ключевыми алгоритмами машинного обучения. Однако перед тем как переходить к более навороченным алгоритмам и подходам, хочется сделать шаг в сторону и поговорить о подготовке данных для обучения модели. Известный принцип garbage in – garbage out на 100% применим к любой задаче машинного обучения; любой опытный аналитик может вспомнить примеры из практики, когда простая модель, обученная на качественно подготовленных данных, показала себя лучше хитроумного ансамбля, построенного на недостаточно чистых данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.



Читать дальше →

Открытый курс машинного обучения. Тема 9. Анализ временных рядов с помощью Python

Время на прочтение27 мин
Охват и читатели405K

Доброго дня! Мы продолжаем наш цикл статей открытого курса по машинному обучению и сегодня поговорим о временных рядах.


Посмотрим на то, как с ними работать в Python, какие возможные методы и модели можно использовать для прогнозирования; что такое двойное и тройное экспоненциальное взвешивание; что делать, если стационарность — это не про вас; как построить SARIMA и не умереть; и как прогнозировать xgboost-ом. И всё это будем применять к примеру из суровой реальности.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →

Введение в архитектуры нейронных сетей

Время на прочтение31 мин
Охват и читатели246K


Григорий Сапунов (Intento)


Меня зовут Григорий Сапунов, я СТО компании Intento. Занимаюсь я нейросетями довольно давно и machine learning’ом, в частности, занимался построением нейросетевых распознавателей дорожных знаков и номеров. Участвую в проекте по нейросетевой стилизации изображений, помогаю многим компаниям.

Давайте перейдем сразу к делу. Моя цель — дать вам базовую терминологию и понимание, что к чему в этой области, из каких кирпичиков собираются нейросети, и как это использовать.

План доклада такой. Сначала небольшое введение про то, что такое нейрон, нейросеть, глубокая нейросеть, чтобы мы с вами общались на одном языке.

Дальше я расскажу про важные тренды, что происходит в этой области. Затем мы углубимся в архитектуру нейросетей, рассмотрим 3 основных их класса. Это будет самая содержательная часть.

После этого рассмотрим 2 сравнительно продвинутых темы и закончим небольшим обзором фреймворков и библиотек для работы с нейросетями.
Читать дальше →

Краткий обзор алгоритма машинного обучения Метод Опорных Векторов (SVM)

Время на прочтение6 мин
Охват и читатели91K

Предисловие




В данной статье мы изучим несколько аспектов SVM:

  • теоретическую составляющую SVM;
  • как алгоритм работает на выборках, которые невозможно разбить на классылинейно;
  • пример использования на Python и имплементация алгоритма в библиотеке SciKit Learn.
Читать дальше →

SVM. Подробный разбор метода опорных векторов, реализация на python

Время на прочтение15 мин
Охват и читатели186K

Привет всем, кто выбрал путь ML-самурая!


Введение:


В данной статье рассмотрим метод опорных векторов (англ. SVM, Support Vector Machine) для задачи классификации. Будет представлена основная идея алгоритма, вывод настройки его весов и разобрана простая реализация своими руками. На примере датасета $Iris$ будет продемонстрирована работа написанного алгоритма с линейно разделимыми/неразделимыми данными в пространстве $R^2$ и визуализация обучения/прогноза. Дополнительно будут озвучены плюсы и минусы алгоритма, его модификации.


image
Рисунок 1. Фото цветка ириса из открытых источников

Читать дальше →

Открытый курс машинного обучения. Тема 7. Обучение без учителя: PCA и кластеризация

Время на прочтение19 мин
Охват и читатели223K

Привет всем! Приглашаем изучить седьмую тему нашего открытого курса машинного обучения!


Данное занятие мы посвятим методам обучения без учителя (unsupervised learning), в частности методу главных компонент (PCA — principal component analysis) и кластеризации. Вы узнаете, зачем снижать размерность в данных, как это делать и какие есть способы группирования схожих наблюдений в данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →

Нескучный туториал по NumPy

Время на прочтение19 мин
Охват и читатели294K
Меня зовут Вячеслав, я хронический математик и уже несколько лет не использую циклы при работе с массивами…

Ровно с тех пор, как открыл для себя векторные операции в NumPy. Я хочу познакомить вас с функциями NumPy, которые чаще всего использую для обработки массивов данных и изображений. В конце статьи я покажу, как можно использовать инструментарий NumPy, чтобы выполнить свертку изображений без итераций (= очень быстро).

Не забываем про

import numpy as np

и поехали!
Читать дальше →

Работа с изображениями на Python

Время на прочтение18 мин
Охват и читатели113K
Тема сегодняшнего разговора — чему же научился Python за все годы своего существования в работе с изображениями. И действительно, кроме старичков родом из 1990 года ImageMagick и GraphicsMagick, есть современные эффективные библиотеки. Например, Pillow и более производительная Pillow-SIMD. Их активный разработчик Александр Карпинский (homm) на MoscowPython сравнил разные библиотеки для работы с изображениями на Python, представил бенчмарки и рассказал о неочевидных особенностях, которых всегда хватает. В этой статье расшифровка доклада, который поможет вам выбрать библиотеку под свое приложение, и сделать так, чтобы она работало максимально эффективно.


О спикере: Александр Карпинский работает в компании Uploadcare и занимается сервисом быстрой модификации изображений на лету. Участвует в разработке Pillow — популярной библиотеки для работы с изображениями на Python, развивает собственный форк этой библиотеки — Pillow-SIMD, который использует современные инструкции процессоров для наибольшей производительности.

50 оттенков matplotlib — The Master Plots (с полным кодом на Python)

Время на прочтение39 мин
Охват и читатели486K
Те, кто работает с данными, отлично знают, что не в нейросетке счастье — а в том, как правильно обработать данные. Но чтобы их обработать, необходимо сначала проанализировать корреляции, выбрать нужные данные, выкинуть ненужные и так далее. Для подобных целей часто используется визуализация с помощью библиотеки matplotlib.



Встретимся «внутри»!
Читать дальше →

Играемся с изображениями в Python

Время на прочтение3 мин
Охват и читатели259K
В этой статье я хотел бы разобрать различные способы преобразования изображений с помощью Python. Для примеров я решил взять несколько наиболее известных. В статье не будет ничего сложного, она ориентированна в основном на новичков.
Картинка для испытаний:


Читать дальше →

Открытый курс машинного обучения. Тема 8. Обучение на гигабайтах с Vowpal Wabbit

Время на прочтение26 мин
Охват и читатели135K

Всем привет!



Вот мы постепенно и дошли до продвинутых методов машинного обучения. Сегодня обсудим, как вообще подступиться к обучению модели, если данных гигабайты или десятки гигабайт. Обсудим приемы, позволяющие это делать: стохастический градиентный спуск (SGD) и хэширование признаков, посмотрим на примеры применения библиотеки Vowpal Wabbit.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →

Собеседование по Data Science: чего от вас ждут

Время на прочтение6 мин
Охват и читатели87K
Data Science – область очень перспективная. За прошлый год мы в ЕРАМ получили 210 резюме от людей, которые хотят заниматься Data Science. Из них на техническое интервью мы пригласили 43 человека, а предложили работу семи. Если спрос большой, почему так?

Мы поговорили с техническими интервьюерами и выяснили: проблема многих кандидатов в том, что они плохо представляют, чем занимаются аналитики данных. Поэтому их знания и навыки не всегда релевантны для работы. Кто-то считает, что опыта работы с Big Data достаточно, чтобы работать в Data Science, кто-то уверен, что хватит просмотра нескольких курсов по машинному обучению, некоторые думают, что хорошо разбираться в алгоритмах необязательно.

Дмитрий Никитко и Михаил Камалов – аналитики данных и технические интервьюеры из ЕРАМ – рассказали, чего ждут на собеседованиях от кандидатов, какие вопросы задают, что ценится в резюме и как подготовиться к собеседованию.


Читать дальше →

Знакомство с межпроцессным взаимодействием на Linux

Время на прочтение11 мин
Охват и читатели239K
Межпроцессное взаимодействие (Inter-process communication (IPC)) — это набор методов для обмена данными между потоками процессов. Процессы могут быть запущены как на одном и том же компьютере, так и на разных, соединенных сетью. IPC бывают нескольких типов: «сигнал», «сокет», «семафор», «файл», «сообщение»…

В данной статье я хочу рассмотреть всего 3 типа IPC:
  1. именованный канал
  2. разделенная память
  3. семафор
Отступление: данная статья является учебной и расчитана на людей, только еще вступающих на путь системного программирования. Ее главный замысел — познакомиться с различными способами взаимодействия между процессами на POSIX-совместимой ОС.
Читать дальше →

Нейросеть на Python, часть 2: градиентный спуск

Время на прочтение16 мин
Охват и читатели61K
Часть 1

Давай сразу код!


import numpy as np
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
alpha,hidden_dim = (0.5,4)
synapse_0 = 2*np.random.random((3,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,1)) - 1
for j in xrange(60000):
    layer_1 = 1/(1+np.exp(-(np.dot(X,synapse_0))))
    layer_2 = 1/(1+np.exp(-(np.dot(layer_1,synapse_1))))
    layer_2_delta = (layer_2 - y)*(layer_2*(1-layer_2))
    layer_1_delta = layer_2_delta.dot(synapse_1.T) * (layer_1 * (1-layer_1))
    synapse_1 -= (alpha * layer_1.T.dot(layer_2_delta))
    synapse_0 -= (alpha * X.T.dot(layer_1_delta))

Часть 1: Оптимизация


В первой части я описал основные принципы обратного распространения в простой нейросети. Сеть позволила нам померить, каким образом каждый из весов сети вносит свой вклад в ошибку. И это позволило нам менять веса при помощи другого алгоритма — градиентного спуска.

Суть происходящего в том, что обратное распространение не вносит в работу сети оптимизацию. Оно перемещает неверную информацию с конца сети на все веса внутри, чтобы другой алгоритм уже смог оптимизировать эти веса так, чтобы они соответствовали нашим данным. Но в принципе, у нас в изобилии присутствуют и другие методы нелинейной оптимизации, которые мы можем использовать с обратным распространением:
Читать дальше →

Градиентный спуск по косточкам

Время на прочтение37 мин
Охват и читатели71K

В интернете есть много статей с описанием алгоритма градиентного спуска. Здесь будет еще одна.


8 июля 1958 года The New York Times писала: «Психолог показывает эмбрион компьютера, разработанного, чтобы читать и становиться мудрее. Разработанный ВМФ… стоивший 2 миллиона долларов компьютер "704", обучился различать левое и правое после пятидесяти попыток… По утверждению ВМФ, они используют этот принцип, чтобы построить первую мыслящую машину класса "Перцептрон", которая сможет читать и писать; разработку планируется завершить через год, с общей стоимостью $100 000… Ученые предсказывают, что позже Перцептроны смогут распознавать людей и называть их по имени, мгновенно переводить устную и письменную речь с одного языка на другой. Мистер Розенблатт сказал, что в принципе возможно построить "мозги", которые смогут воспроизводить самих себя на конвейере и которые будут осознавать свое собственное существование» (цитата и перевод из книги С. Николенко, «Глубокое обучение, погружение в мир нейронный сетей»).


Ах уж эти журналисты, умеют заинтриговать. Очень интересно разобраться, что на самом деле представляет из себя мыслящая машина класса «Перцептрон».

Читать дальше →

Настройка маленького кластера Hadoop 2.2.0 с нуля

Время на прочтение7 мин
Охват и читатели67K


В данной статье будет по шагам разобран процесс создания небольшого кластера Hadoop для опытов.

Несмотря на то, что в интернете на иностранных ресурсах есть полно материала про настройку/развертывание Hadoop, большинство из них либо описывают настройку ранних версий (0.X.X и 1.X.X), либо описывают только настройку в режиме single mode/pseudo distributed mode и лишь частично fully distributed mode. На русском языке материала практически нет вовсе.

Когда мне самому понадобился Hadoop, то я далеко не с первого раза смог все настроить. Материал был неактуален, часто попадались конфиги, которые используют deprecated параметры, поэтому использовать их нежелательно. А даже когда все настроил, то задавался многими вопросами, на которые искал ответы. Также встречались похожие вопросы у других людей.

Всем кому интересно, прошу пожаловать по кат.
Подробности

Основные функции ETL-систем

Время на прочтение7 мин
Охват и читатели384K
ETL – аббревиатура от Extract, Transform, Load. Это системы корпоративного класса, которые применяются, чтобы привести к одним справочникам и загрузить в DWH и EPM данные из нескольких разных учетных систем.

Вероятно, большинству интересующихся хорошо знакомы принципы работы ETL, но как таковой статьи, описывающей концепцию ETL без привязки к конкретному продукту, на я Хабре не нашел. Это и послужило поводом написать отдельный текст.
Читать дальше →

Пару слов о распознавании образов

Время на прочтение13 мин
Охват и читатели318K
Давно хотел написать общую статью, содержащую в себе самые основы Image Recognition, некий гайд по базовым методам, рассказывающий, когда их применять, какие задачи они решают, что возможно сделать вечером на коленке, а о чём лучше и не думать, не имея команды человек в 20.
image

Какие-то статьи по Optical Recognition я пишу давненько, так что пару раз в месяц мне пишут различные люди с вопросами по этой тематике. Иногда создаётся ощущение, что живёшь с ними в разных мирах. С одной стороны понимаешь, что человек скорее всего профессионал в смежной теме, но в методах оптического распознавания знает очень мало. И самое обидное, что он пытается применить метод из близрасположенной области знаний, который логичен, но в Image Recognition полностью не работает, но не понимает этого и сильно обижается, если ему начать рассказывать что-нибудь с самых основ. А учитывая, что рассказывать с основ — много времени, которого часто нет, становится всё ещё печальнее.
Распознать

Сегментация изображения

Время на прочтение5 мин
Охват и читатели98K

Сегментация изображения


Одной из основных задач обработки и анализа изображений является сегментация, т.е. разделение изображения на области, для которых выполняется определенный критерий однородности, например, выделение на изображении областей приблизительно одинаковой яркости. Понятие области изображения используется для определения связной группы элементов изображения, имеющих определенный общий признак (свойство).
Один из основных и простых способов — это построение сегментации с помощью порога. Порог — это признак (свойство), которое помогает разделить искомый сигнал на классы. Операция порогового разделения заключается в сопоставлении значения яркости каждого пикселя изображения с заданным значением порога.

Читать дальше →
1

Информация

В рейтинге
Не участвует
Зарегистрирован
Активность