Pull to refresh
9
Karma
0
Rating
  • Followers 16
  • Following

Заметки Датасатаниста: реляционные vs связанные данные

RUVDS.com corporate blog Big Data *Machine learning *Data Engineering *


Сегодня мы поговорим о простой, казалось бы, теме, как реляционные и связанные данные.

Несмотря на всю ее простоту, замечаю, что иногда люди действительно путаются в них — я решил это исправить, написав краткое и неформальное объяснение, чем они являются и зачем нужны.

Мы обсудим, что такое реляционная модель и связанные с ней SQL и реляционная алгебра. Потом перейдем к примерам связанных данных из Викидата, а далее RDF, SPARQL и чутка поговорим про Datalog и логическое представление данных. В конце выводы — когда применять реляционную модель, а когда связно-логическую.

Основная цель заметки — это описать, когда что имеет смысл применять и почему. Так как тут немало непростых концепций сошлись в одном месте, то конечно же можно было бы по каждой написать книгу — но наша задача сегодня дать представление о теме и мы будем разбирать неформально на простых примерах.

Если у вас есть сомнения, чем одно отличается от второго и зачем вообще нужны связанные данные (LinkedData), то добро пожаловать под кат.
Читать дальше →
Total votes 45: ↑43 and ↓2 +41
Views 6.5K
Comments 6

Заметки Датасатаниста: что делать, если перед вами оказалась NP-полная задача

RUVDS.com corporate blog Data Mining *Big Data *Machine learning *


Наверное, каждый сталкивался с тем, что приходилось столкнуться с какой-то сложной задачей, решение к которой не удавалось подобрать не то что сразу — а даже после долгих упорных часов работы или дней. Об одном из классов таких задач — NP-полных, мы сегодня и поговорим.

А вообще реально ли встретить такие задачи в обычной жизни? На самом деле, они возникают в огромном ряде случаев: комбинаторика, графы и сети, выполнение логических формул, работа с картами, оптимальные загрузки, отображения, задачи дискретной оптимизации, нахождение самых длинных последовательностей, поиск равных сумм и многие задачи на множества! И это далеко не полный список.

Под катом неформальный гайд — как понять, что перед вам может быть NP задача и что делать, если это именно она и оказалась. Сегодня мы атакуем этот вопрос с практической стороны.
Читать дальше →
Total votes 33: ↑33 and ↓0 +33
Views 7.2K
Comments 8

Заметки Дата Сатаниста: честность модели

RUVDS.com corporate blog Data Mining *Mathematics *Machine learning *Artificial Intelligence
Один из ключевых фундаментальных принципов обработки данных, согласно GDPR, это право человека на объяснение принятого решения и честность этого решения.

И сегодня мы поговорим о том, что же такое честность модели машинного обучения.


Картинка взята отсюда

И разберем на простом примере выдачи кредитов: какие проблемы могут возникнуть, какие подходы к ним бывают и что из этого обычно получается.

Задача: по данным пользователя выдать решения и вероятности того, что не произойдет дефолта кредита. Причем таким образом, чтобы наши модели машинного обучения не попали под раздачу со всеми законами о дискриминации.
Читать дальше →
Total votes 40: ↑37 and ↓3 +34
Views 7K
Comments 6

Заметки Дата Сайентиста: с чего начать и нужно ли оно?

RUVDS.com corporate blog Data Mining *Big Data *IT career Data Engineering *

TL;DR это пост для вопросов/ответов про Data Science и о том, как войти в профессию и развиваться в ней. В статьей я разберу основные принципы и FAQ и готов отвечать на ваши конкретные вопросы — пишите в комментариях (или в личке), я постараюсь на все ответить в течение нескольких дней.
С появлением цикла заметок «дата сатаниста» пришло немало сообщений и комментариев с вопросами о том, как начать и куда копать и сегодня мы разберем основные скиллы и вопросы возникшие после публикаций.

Все указанное тут не претендует ни какую истину в последней инстанции и является субъективным мнением автора. Мы разберем основные вещи, которые кажутся самыми важными в процессе.
Читать дальше →
Total votes 36: ↑33 and ↓3 +30
Views 14K
Comments 12

Заметки Дата Сайентиста: на что обратить внимание при выборе модели машинного обучения — персональный топ-10

RUVDS.com corporate blog Python *Data Mining *Big Data *Data Engineering *

Мы снова в эфире и продолжаем цикл заметок Дата Сайентиста и сегодня представляю мой абсолютно субъективный чек-лист по выбору модели машинного обучения.

Это топ-10 свойств задачи и просто пунктов (без порядка в них), с точки зрения которых я начинаю выбор модели и вообще моделирование задачи по анализу данных.

Совсем не обязательно, что у вас он будет таким же — здесь все субъективно, но делюсь опытом из жизни.
Читать дальше →
Total votes 33: ↑31 and ↓2 +29
Views 10K
Comments 10

Заметки Дата Сайентиста: персональный обзор языков запросов к данным

RUVDS.com corporate blog Python *Data Mining *Big Data *Data Engineering *

Рассказываю из личного опыта, что где и когда пригодилось. Обзорно и тезисно, чтобы понятно было, что и куда можно копать дальше — но тут у меня исключительно субъективный личный опыт, у вас, может быть, все совсем по-другому.

Почему важно знать и уметь обращаться с языками запросов? По своей сути в Data Science есть несколько важнейших этапов работы и самый первый и важнейший (без него уж точно ничего работать не будет!) — это получение или извлечение данных. Чаще всего данные в каком-то виде где-то сидят и их нужно оттуда «достать». 

Языки запросов как раз и позволяют эти самые данные извлечь! И сегодня я расскажу, о тех языках запросов, которые мне пригодились и расскажу-покажу, где и как именно — зачем оно нужно для изучения.

Всего будет три основных блока типов запросов к данным, которые мы разберем в данной статье:

  • «Стандартные» языки запросов — то, что обычно понимают, когда говорят о языке запросов, как, например, реляционная алгебра или SQL.
  • Скриптовые языки запросов: например, питоновские штучки pandas, numpy или shell scripting.
  • Языки запросов к графам знаний и графовым базам данных.

Все написанное здесь — это просто персональный опыт, что пригодилось, с описанием ситуаций и «зачем оно было нужно» — каждый может примерить, насколько подобные ситуации могут встретиться вам и попробовать подготовиться к ним заранее, разобравшись с этими языками до того, как придется их в (срочном порядке) применять на проекте или вообще попасть на проект, где они нужны.
Читать дальше →
Total votes 45: ↑42 and ↓3 +39
Views 10K
Comments 8

Заметки Дата Сайентиста: как измерить время забега марафона лежа на диване

RUVDS.com corporate blog Python *Data Mining *Lifehacks for geeks Data Engineering *

Продолжая цикл заметок про реальные проблемы в Data Science, мы сегодня разберемся с живой задачей и посмотрим, какие проблемы нас ждут в пути.

Например, помимо Data Science, я давно увлекаюсь атлетикой и одной из целей в беге для меня, конечно, является марафон. А где марафон там и вопрос — за сколько же бежать? Часто ответ на этот вопрос дается на глаз — «ну в среднем бегут» или «вот Х хорошее время»!

И сегодня мы займемся важным делом — применим Data Science в реальной жизни и ответим на вопрос:

А что нам говорят данные о московском марафоне?

Точнее, как уже понятно по таблице в начале — мы соберем данные, разберемся, кто и как бежал. А заодно это поможет понять, стоит ли нам соваться и позволит здраво оценить свои силы!

TL;DR: Я собрал данные по забегам московского марафона за 2018/2019, проанализиворовал время и показатели участников, а код и данные выложил в открытый доступ.
Добро пожаловать под кат!
Total votes 30: ↑28 and ↓2 +26
Views 4.5K
Comments 17

Что может пойти не так с Data Science? Сбор данных

RUVDS.com corporate blog Python *Data Mining *Social networks and communities Data Engineering *

Сегодня существует 100500 курсов по Data Science и давно известно, что больше всего денег в Data Science можно заработать именно курсами по Data Science (зачем копать, когда можно продавать лопаты?). Основной минус этих курсов в том, что они не имеют ничего общего с реальной работой: никто не даст вам чистые, обработанные данные в нужном формате. И когда вы выходите с курсов и начинаете решать настоящую задачу — всплывает много нюансов.

Поэтому мы начинаем серию заметок «Что может пойти не так с Data Science», основанных на реальных событиях случившихся со мной, моими товарищами и коллегами. Будем разбирать на реальных примерах типичные задачи по Data Science: как это на самом деле происходит. Начнем сегодня с задачи сбора данных.

И первое обо что спотыкаются люди, начав работать с реальными данными — это собственно сбор этих самых релевантных нам данных. Ключевой посыл этой статьи:

Мы систематически недооцениваем время, ресурсы и усилия на сбор, очистку и подготовку данных.

А главное, обсудим, что делать, чтобы этого не допустить.

По разным оценкам, очистка, трансформация, data processing, feature engineering и тд занимают 80-90% времени, а анализ 10-20%, в то время как практически весь учебный материал фокусируется исключительно на анализе.

Давайте разберем как типичный пример простую аналитическую задачу в трех вариантах и увидим, какими бывают «отягчающие обстоятельства».

И для примера опять же, мы рассмотрим подобные вариации задачи сбора данных и сравнения сообществ для:

  1. Двух сабреддитов Reddit
  2. Двух разделов Хабра
  3. Двух групп Одноклассников
Читать дальше →
Total votes 47: ↑44 and ↓3 +41
Views 11K
Comments 3

Information

Rating
Does not participate
Works in
Registered
Activity