Вчера все отечественные сайты облетела новость о том, что в России Микроном разработана технология производства микросхем по нормам 65нм (или даже «В России выпущены первые 65-нм микросхемы»). Ранее Микрон имел лицензированную у STMicroelectronics технологию 90нм. Попробуем чуть детальнее разобраться, как там обстоят дела.

Микрон на этот раз на удивление опубликовал достаточно много информации. На фотографиях — разметка одного тестового транзистора и фотографии сделанные электронным микроскопом. Под катом — посмотрим, как это можно было сделать и сравним с Intel 65nm.

Сравнение техпроцессов

Микрон опубликовал таблицу с параметрами их техпроцесса. Для сравнения, я добавил техпроцесс Intel 65нм:
Технология Микрон 65нм Микрон 90нм Intel 65нм
Gate length 45нм
На фотографии 54нм
65нм 35-38нм
+SiGe stress
Gate oxide thickness (electrical) 2.2nm (n) / 2.2nm (p) 2.2nm (n) / 2.2nm (p) 1.2nm SiON
Interconnect 9-Cu + 1-Al 7-Cu + 1-Al 8-Cu
Metal 1 pitch 0.18µm 0.24µm 0.21µm
Inter-level dielectric k = 2.9 k = 2.9 k=2.9
M1 pitch (шаг первого уровня металлизации) вызывает некоторое сомнение — по мере уменьшении шага металла M1 менее 0.2-0.3мкм (для 65нм технологии) быстро падает скорость работы микросхемы из-за увеличения RC-константы, потому Intel и не стал его уменьшать менее 0.21-0.22мкм. Очередное напоминание, что именно межсоединения являются основным тормозом прогресса микроэлектроники.

Длина затвора и толщина подзатворного диэлектрика говорит о том, что это LP техпроцесс — с низким потреблением и меньшей скоростью работы. Так что сделать процессор, аналогичный первым Core2Duo на Микроне пока не выйдет, но и для LP техпроцессов есть масса применений.

Количество металлов позволяет реализовывать процессоры любой сложности.

В погоне за 65нм

Как мы помним, разрешение оптической фотолитографии подчиняется критерию Рэлея:


На данный момент самая продвинутая установка фотолитографии на Микроне (сканер ASML PAS/1150C) имеет NA=0.75 и работает на длине волны 193нм. Параметр k — множитель используемых «ухищрений», позволяющих улучшить получаемое разрешение. k для фотолитографии без хитростей — 0.4. В случае Микроновских 90нм — k был уже 0.35. Чтобы с тем же сканером получить честные 65нм, k нужно было бы как-то снизить до 0.25 (т.е. добавить достаточно много хитростей).

Однако учитывая слова из пресс-релиза («были разработаны специальные алгоритмы внесения оптической коррекции фотолитографии»), обычной, классической топологии тестового транзистора (не используя «одномерные» структуры) и длину затвора на фотографии (54нм) — на данный момент похоже просто на текущем оборудовании без дополнительных хитростей сделали транзисторы с затвором меньшего размера для первых тестов (это резко увеличивает процент брака, но для тестовых транзисторов приемлемо) + отработали новые технологические шаги техпроцесса, отличающиеся от 90нм.

Говорят, в Марте 2014 года на Микроне ждут приход нового сканера — и там 65нм получится без дополнительных хитростей, а с хитростями — и более тонкие техпроцессы (45нм, ниже?). Вот тогда, к концу года (а то и в 2015) — и выйдут первые полноценные микросхемы по технологии 65нм. Объем производства ожидается порядка 500 200мм пластин в месяц — это практически гарантирует, что производство получится очень дорогим, и доступным только для государства.

Наконец о возможных хитростях

65нм можно было получить и на текущем оборудовании Микрона. Достаточно вспомнить про то, как Интел в 2007-м сделал 45нм техпроцесс на «сухой» фотолитографии используя сканер с апертурой 0.93 (у Микрона напомню 0.75): критические слои экспонировали в 2 захода: в первый заход экспонировали ряд горизонтальных линий (используя dipole illumination, поляризацию — так можно достичь большего разрешения, но только вдоль одной оси). Затем второй экспозицией нарезали линии на кусочки нужной формы. Результат на фотографии. Собственно, аналогичным образом получается разрешение 32нм.

Этот подход позволяет получить k=0.21, и для Микроновского сканера это позволило бы получить 55нм техпроцесс. Но безусловно объем работ был бы весьма внушительным.

Резюме

  • Говорить о «65нм микросхемах сделанных в России» пока преждевременно — это единичные тестовые транзисторы на существующем оборудовании.
  • Технология LP (бОльшая длина затвора, более толстый подзатворный диэлектрик) — с низким потреблением и меньшей скоростью, ожидать процессоров аналогичных Intel 65nm (первые Core2Duo) не стоит.
  • С новым оборудованием (в первую очередь сканер), которое должно заработать на Микроне в этом году — будут возможна как 65нм технология, так и более тонкие.
  • Из-за очень маленького объема производства (500 пластин в месяц) себестоимость пластины обещает быть довольно высокой, завалить конкурентоспособной гражданской 65нм продукцией рынок не выйдет. Но этого и не требовалось.

Ссылки

Пресс-релиз Микрона
Новость CNews с некоторыми дополнениями
Обзор технологии Intel 65nm
Сравнительная таблица целой кучи технологий