Общая картина по мониторингу Zabbix.

Для сглаживания данных используется медианное сглаживание:

  • Долгая скользящая: 1 час(красная линия).

  • Короткая скользящая: 10 минут(синяя линия).

  • Активные соединения и утилизация CPU: стандартные метрики Zabbix.

Как видно из графика - имеет место деградация производительности СУБД:

  1. Количество активных сессий растет, но производительность падает

  2. Утилизация CPU растет , но производительность падает

Ситуация, принципиально отличается от описанной в казалось бы похожем кейсе:

CPU Utilization = 100%. Это проблема СУБД? / Хабр (habr.com)

Поэтому и решаться данный инцидент будет по другому.

Использование статистического анализа

1.Выделение трендов на графике производительности

Выполняется тривиально, дополнительных инструментов не требуется.

  • 13:00 - 13:28 : Горизонтальный тренд - высокая производительность

  • 13:28 - 13:47 : Деградация производительности

  • 13:57 - 14:05 : Горизонтальный тренд - низкая производительность. Нагрузка на СУБД уменьшилась.

13:00 - 13:28 : Горизонтальный тренд - высокая производительность

Статистические показатели производительности СУБД

Рис.1. Статистические показатели горизонтального тренда 13:00-13:28

Прямая корреляция между количество активных сессий и производительностью СУБД . Или другими словами - чем выше нагрузка на СУБД , тем выше производительность.

Статистические показатели ожиданий СУБД - корреляция ожиданий и производительности СУБД

Рис.2. Корреляционный анализ ожиданий и производительности 13:00-13:28

Количество пользовательских запросов по которым имеются события ожидания СУБД - минимально.

13:28 - 13:47 : Деградация производительности

Статистические показатели производительности СУБД

Рис.3. Статистические показатели нисходящего тренда 13:28 - 13:47

Сильная обратная корреляция - чем выше нагрузка на СУБД тем ниже производительность. Явный признак инцидента производительности СУБД

Статистические показатели ожиданий СУБД - корреляция ожиданий и производительности СУБД

Рис.4. Корреляционный анализ ожиданий и производительности СУБД нисходящего тренда 13:28 - 13:47

Как видно из таблицы - количество ожиданий кардинально увеличилось. Явный признак - имеются серьезные проблемы с производительностью СУБД.

2.Определение наиболее значимой причины деградации производительности СУБД

Из Рис.4 видно, что наибольшая обратная корреляция между событиями ожидания и снижением производительности СУБД имеется для события LWLock / BufferMapping

Рис.5. Ожидание LWLock / BufferMapping

Как видно - количество ожиданий менее чем за 20 минут - весьма существенно.

Итак, первый результат

Первой( но конечно не единственной) причиной деградации производительности СУБД в период 13:28 - 13:47 является - большое количество ожиданий LWLock / BufferMapping при выполнении пользовательских запросов.

2.1. Определение SQL запросов с наибольшим количеством ожиданий LWLock / BufferMapping

Чуть подробнее об ожидании

BufferMapping

Ожидание при связывании блока данных с буфером в пуле буферов.

Postgres Pro Enterprise : Документация: 16: 27.2. Система накопительной статистики : Компания Postgres Professional

LWLock - buffer_mapping

This event occurs when a session is waiting to associate a data block with a buffer in the shared buffer pool.

Context

The shared buffer pool is an PostgreSQL memory area that holds all pages that are or were being used by processes. When a process needs a page, it reads the page into the shared buffer pool. The shared_buffers parameter sets the shared buffer size and reserves a memory area to store the table and index pages. If you change this parameter, make sure to restart the database. For more information, see Shared Buffer Area.

The buffer_mapping wait event occurs in the following scenarios:

  • A process searches the buffer table for a page and acquires a shared buffer mapping lock.

  • A process loads a page into the buffer pool and acquires an exclusive buffer mapping lock.

  • A process removes a page from the pool and acquires an exclusive buffer mapping lock.

LWLock - buffer_mapping | Redrock Postgres Documentation (rockdata.net)

3. Определение запросов с максимальным количество ожиданий

Рис.6. Запросы с ожиданием LWLock / BufferMapping c количество более 100.

Далее, дело техники, используя утилиту pgpro_pwr по queryid, находим проблемный запрос за период 13:30 - 13:50(снимки pgpro_pwr формируются каждые 10 минут):

select
  this_.id as id1_13_0_,
  this_.application_name as applicat2_13_0_,
  this_.assignment_snapshot as assignme3_13_0_,
  this_.event_type as event_ty4_13_0_,
  this_.start_date as start_da5_13_0_,
  this_.parent_oid as parent_o6_13_0_,
  this_.reason_data as reason_d7_13_0_,
  this_.reason_key as reason_k8_13_0_,
  this_.reason_ref as reason_r9_13_0_,
  this_.reason_request_business_id as reason_10_13_0_,
  this_.reason_request_id as reason_11_13_0_,
  this_.requester_full_name as request12_13_0_,
  this_.requester_oid as request13_13_0_,
  this_.role as role14_13_0_,
  this_.role_oid as role_oi15_13_0_,
  this_.target_oid as target_16_13_0_,
  this_.timestamp as timesta17_13_0_,
  this_.end_date as end_dat18_13_0_,
  this_.type as type19_13_0_
from
  report_role_history_item this_
where
  (this_.target_oid in ($1) or this_.parent_oid in ($2))
order by this_.timestamp desc limit $3

Запрос передается разработчикам , для анализа .

Дальнейшие события ожидания анализируются схожим образом. Если отсортировать таблицу Рис.4. по количеству пользовательских запросов(более 100) , то можно и нужно сформировать список проблемных запросов для передачи группе разработки на оптимизацию и доработку.

Рис.7. Список ожиданий отсортированный по количеству пользовательских запросов.

Итог

Статистический анализ производительности СУБД позволяет подтвердить наличие деградации производительности не дожидаясь деградации на уровне приложения.

Корреляционный анализ ожиданий и производительности СУБД позволяет быстрее определить корневую причину снижения производительности СУБД и определить список проблемных пользовательских запросов.