В недавней статье товарищ KvanTTT поднял вопрос:
чрезмерно развернутый ответ.
Сразу скажу, материал холиварный. Местами слишком эмоциональный. Очень спорный. Слишком личный — часто основан на собственном опыте, небогатом, хоть и разнообразном. Пост касается школьных и университетскихтекстов учебников: у «профессиональной» литературы своя специфика, своя аудитория. Решения у проблемы в текущих реалиях нет. При этом, часть «моих» наблюдений задолго до меня высказывали такие авторитеты, как Кнут и Хэмминг; чуть менее популярные ребята даже запилили инструкцию "Как читать математику".
Итак, на мой взгляд, основные претензии не столько к записи формул, сколько к подаче материала. Причем, к подаче материала на практически всех уровнях образования, начиная со школы, и заканчивая передовой наукой. Начало текущей ситуации положил Евклид, заявивший про отсутствие царской дороги в математике. Царскую дорогу не проложили до сих пор. Евклид обходился, и мы сможем.
Первая проблема — значимость не показана. Еще один подарок от Евклида: «Дай вопрошающему грош, если он ищет выгоды, а не математики». Авторы начинают вводить определения, доказывать теоремы и творить прочую математику без объяснения зачем оно вообще нужно. Пример: учебник по математическому анализу от Фихтенгольца. Почитайте первую главу: «из школьного курса вы знаете про рациональные числа, но потребности математики понуждают нас ввести вещественные...» и понеслась. Какие потребности, какой математики, чем не устраивают рациональные — да пес его знает. «Очевидно».
Или другой пример из того же учебника. «Постоянное число a называется пределом варианты
если для каждого положительного
сколько бы мало оно ни было, существует такой номер N, что все значения
, у которых номер n>N, удовлетворяет равенству
.»
Большинство студентов не понимает определения выше, но через полгода привыкает к нему. Еще больше студентов даже к концу обучения не осознает, зачем им было нужно понятие предела последовательности. Аналогично для функций, интегралов, рядов… Фихтенгольц описывает какие-то математические объекты, иногда дает частные примеры — и все. Ну да, сейчас мне понятно, что пределы нужны, например, для корректного описания верхних/нижних сумм при введении интегралов, но до интегралов еще два семестра!
Или определитель, определяемый как кососимметрическая полилинейная функция. Ребята, вы это серьезно? Единственный адекватный ответ студента-первокурсника на такой определение «и что»? Выгода какая с этого определения? Не спорю, выгода есть, но всякий ли первокурсник может её осознать?
Ложное решение проблемы: история вопроса. Проявляется на всякого рода конференциях. «Проблему поставил Иаков, исследовал его ученик Авель, и ученик ученика Каин, и сто-пятьсот воплощений Вишны». В чем суть проблемы, почему её решал первоначальный автор, почему так важно убивать на неё профессоро-часы — опускается.
В принципе, схожа с предыдущей. Вспомните курс теории вероятностей. Какие там преобладают задачи? «В корзине лежат 25 черных и 10 белых шаров...». Казиношные примеры, карточные, D&D, экономические — не, не слышали. Мы будем использовать максимально политкорректные примеры, хоть теория вероятностей выросла из исследований игры в кости.
Про живые примеры недавно писала Free_Mic_RS
Математика начинается с задачи. И мертвые, однобокие задачи оставляют впечатление, что теор-вер только с ними и работает. Намерение авторов благое: дать пример, а потом перейти к общему. Абстрагировать от примера. Но несколько «живых» примеров сделали бы переход к абстракции гораздо полезнее. По крайней мере, я свято верю, что обратный процесс (переход от абстрактного к частному) проходил бы гораздо проще.
Помните школу? А формулу дискриминанта? А как она доказывается/выводится? Один из способов: чисто алгебраический. Берем уравнение
, «Умножаем каждую часть на
и прибавляем
» (почему именно на эти значения?), еще немного трансформаций — и готово. После дискриминанта ученикам дают дискриминант-для-четного-b. А потом формулы Виета. А ещё полные квадраты. И кучу примеров. И далеко не всегда объясняется, зачем нужны все эти методы.
А теперь представьте ситуацию, ученику говорят: «сегодня мы научимся решать уравнения с
. Любые.» И начинается серия примеров с усложнением.
Очень много примеров, которые органично приводят к решению уравнения через полные квадраты. Потом уже можно вводить дискриминант (как простой алгоритм для решения уравнений, когда ученики устанут выделять полные квадраты), и Виет с четным дискриминантом как «ноу-хау».
Схожий подход используется в учебниках. Увы, не во всех. И не везде видна четкая последовательность. По слухам, некоторые авторы теряли листы черновиков в трамваях, а потом заменяли утерянные куски выражениями вроде «легко показать, что...». В итоге, вместо спокойных прыжков с примера на пример, студентыбыли вынуждены перепрыгивать через пропасть. Сколько людей сорвалось и еще сорвется за 10+6 лет обучения в школе/ВУЗе?
Личный пример (просили в оригинальном посте). На первом курсе матана я страдал. Спокойно решая примеры, совершенно не усваивал теорию. Попросил однокурсника о помощи с вычислением длины кривой через интеграл. Тот взял бутылку пива, нарисовал рандомную кривую, спрямил бесконечно малыми отрезками, выделил один такой отрезок, достроил его до треугольника dl, dx, dy, и спросил: «Теорему Пифагора помнишь»? Дальше все было просто.

Я его спросил: а почему такое не показывают на парах/в учебниках? Он показал пару контрпримеров, объяснил зачем нужен формализм в матане — и у меня попёрло. Я просто читал теорему, выделял главное, писал/решал тривиальные примеры, потом разбирался с формализмом — и реально понимал, о чем идет речь.
Я не знаю, можно ли массово использовать подход общий обзор => контрпримеры => формализм. Не знаю, сколько и какой теории/практики нужно набрать студенту до «прорыва», с трудом представляю себе, как ставить педагогические эксперименты на эту тему, и сколько труда придется вложить в исследования. Но память о том объяснении живет уже 10 лет. И спустя все эти годы я стараюсь слушателям сначала дать общую картину, потом показать проблемы, и потом уже погружаться в детали.
Вы скажете, мои персональные ощущения могут быть ошибочными. Помимо них у меня есть только аналогичные идеи от Хэмминга:
Как мне рассказывали, в НМУ новый концепт всегда вводился с десятком вопросов. А что если так? А если этот пункт условия не выполнен? Что нужно, чтоб дополнить наш концепт до полугруппы? Слушателям давали поиграть с предметом. Привыкнуть. Думаю, над опытом НМУ стоит хорошенько задуматься.
Наверняка в высших разделах математики подход «сначала пример, потом абстракция» не сработает. Так, примеры «на бумажке» никак не помогают осознать RSA. Зато растущее время работы программы с увеличением длины ключа помогает прочувствовать чисто практические аспекты.
Есть опасение, что «идеальные/тепличные» школьные учебники приведут к шоку при работе с «вышкой». Вроде как, «хардкорщика надо воспитывать смолоду».
Довольно сложно разрабатывать курсы, надеясь что студенты уже что-то знают. Чем больше требуемая база, тем больше вероятность, что что-то из базы студентом недопонято.
Говорят, пик формы математиков — 30 лет. После 30 уже можно нагружать их писать учебники, дав в напарники спеца методиста.
Текущие технологии позволяют писать тексты командой, используя git. На хабре недавно проскакивала статья про компиляцию TeXa в pdf в процессе CI. Уверен, авторский коллектив с хорошим инструментарием может писать гораздо более качественные учебники.
Помимо профессоров, учителей, студентов и школьников в математике есть государства. И регламенты. И требования. И сертификации. Все это влияет на учебники, авторов, преподавателей, и качество подачи материала.
В текущих (российских) реалиях — никак. Энтузиасты есть, профессионалы есть, мотивации нет.
У профессоров математики хватает своих задач, чтобы писать учебники. Иногда не хватает чисто гуманитарных скиллов, писать книги в университетах не учат. Плюс, профессиональная деформация: «очевидное» для профессора может быть неподъёмно для студентов. Учителя математики загружены текучкой. И бумагами. И репетиторством. Про государство промолчу. Почти не сталкивался с его представителями, так что говорить нечего. Разве что, упомяну политику замену учебников каждые три года. После школы я хотел сдать свои учебники в библиотеку, мне сказали «они старые, нельзя их хранить». Мотивации писать хорошие учебники такой подход не добавляет.
Иными словами, от системы образования лично я позитивных подвижек не жду. Надеюсь, конечно, но не жду. Что выручает — проблески ИТ и прочей инженерии. На одной из математических конференций я получил от одного из участников книгу по компьютерной графике. Автор работал в конторе, разрабатывающей графическое ядро какой-то чертежной системы, и материал был вполне неплох. Математика была не «чистая», прикладная, но сам факт существования хорошего учебного материала безусловно радует.
Еще один подход: преподаватели от компаний, работающие в ВУЗах. Математических текстов от этих ребят ждать не приходится, специфика не та. Разве что, геймдевщики соберутся написать мануал по теорверу, или графики напишут про алгебру/геометрию необходимую для разработки тех же САПРов(если такие проекты есть — зовите).
Наконец, есть различные негосударственные образовательные платформы, вроде той же Coursera. Эти ребята могут все, ибо работают за деньги, конкурируют, быстро получают обратную связь. Но у них свой недостаток: формат подачи данных иной. Непосредственно текстов они не пишут.
Самому интересно. Может, всё останется как есть. Может, будет уход от текстов в математике. А может, авторы проникнутся идеей "продукт текст должен быть удобным для клиента читателя", и силами первопроходцев удастся таки переломить традицию. Тогда лет через 30-50-100 у нас появятся учебники, понятные большинству читателей.
Upd1. Вставил фото с вычислением длины участка кривой.
Upd2. В комментариях часто упоминают, что текст посвящен проблемам преподавания, а не профессиональной математике. Причина проста: большая часть виденных мною «профессиональных» работ в плане подачи материала не отличается от учебников. При этом, школьная\университетская литература известна большинству на хабре, а «профессиональная» — процентам.
Можете пояснить что вам не нравится в современной записи (математических положений и) формул и как ее можно улучшить?Я постарался ответить в одном комментарии, но размер текстового поля не позволил закончить выкладки. Данная статья —
Сразу скажу, материал холиварный. Местами слишком эмоциональный. Очень спорный. Слишком личный — часто основан на собственном опыте, небогатом, хоть и разнообразном. Пост касается школьных и университетских

Первая проблема — значимость не показана. Еще один подарок от Евклида: «Дай вопрошающему грош, если он ищет выгоды, а не математики». Авторы начинают вводить определения, доказывать теоремы и творить прочую математику без объяснения зачем оно вообще нужно. Пример: учебник по математическому анализу от Фихтенгольца. Почитайте первую главу: «из школьного курса вы знаете про рациональные числа, но потребности математики понуждают нас ввести вещественные...» и понеслась. Какие потребности, какой математики, чем не устраивают рациональные — да пес его знает. «Очевидно».
Или другой пример из того же учебника. «Постоянное число a называется пределом варианты
Большинство студентов не понимает определения выше, но через полгода привыкает к нему. Еще больше студентов даже к концу обучения не осознает, зачем им было нужно понятие предела последовательности. Аналогично для функций, интегралов, рядов… Фихтенгольц описывает какие-то математические объекты, иногда дает частные примеры — и все. Ну да, сейчас мне понятно, что пределы нужны, например, для корректного описания верхних/нижних сумм при введении интегралов, но до интегралов еще два семестра!
Или определитель, определяемый как кососимметрическая полилинейная функция. Ребята, вы это серьезно? Единственный адекватный ответ студента-первокурсника на такой определение «и что»? Выгода какая с этого определения? Не спорю, выгода есть, но всякий ли первокурсник может её осознать?
Ложное решение проблемы: история вопроса. Проявляется на всякого рода конференциях. «Проблему поставил Иаков, исследовал его ученик Авель, и ученик ученика Каин, и сто-пятьсот воплощений Вишны». В чем суть проблемы, почему её решал первоначальный автор, почему так важно убивать на неё профессоро-часы — опускается.
Следующая проблема — авторы не ставят реальных проблем
В принципе, схожа с предыдущей. Вспомните курс теории вероятностей. Какие там преобладают задачи? «В корзине лежат 25 черных и 10 белых шаров...». Казиношные примеры, карточные, D&D, экономические — не, не слышали. Мы будем использовать максимально политкорректные примеры, хоть теория вероятностей выросла из исследований игры в кости.
Про живые примеры недавно писала Free_Mic_RS
Я преподавала статистику и фин.анализ...
Я преподавала статистику и фин.анализ у относительно гуманитарных ребят. Это было довольно сложно — видеть 30-90 пар пустых глаз. Меня саму начинало мутить от их беспросветного непонимания индексов, показателей и формул. Но, конечно, сообразительные ребятки были, и вот однажды я услышала, как один парень объяснял что-то сокурсникам: «Да вы уловите суть! Вы пришли в клуб и думаете, что все девушки там, как Анджелина Джоли. Идёте, а там у первой ноги короткие, у второй короткая стрижка, у третьей пятый размер, у четвёртой — нулевой, у пятой есть парень и т.д. И ни одна не Джоли, но из них её собрать можно. Но в целом это молодые девушки, с которыми можно приятно провести время. И вот то, насколько они далеки от идеала, определяет качество вашей вечеринки. В этом суть дисперсии — отклонения кучи циферок от самой главной циферки». Это было прекрасно, живо и весело. Я взяла опыт на вооружение и уже через неделю у нас был проектор с интересными презентациями и примерами, а аудитория не тупо записывала под бу-бу-бу и стук мела по доске, а искала примеры. Это была лучшая сессия за 2 года.
Математика начинается с задачи. И мертвые, однобокие задачи оставляют впечатление, что теор-вер только с ними и работает. Намерение авторов благое: дать пример, а потом перейти к общему. Абстрагировать от примера. Но несколько «живых» примеров сделали бы переход к абстракции гораздо полезнее. По крайней мере, я свято верю, что обратный процесс (переход от абстрактного к частному) проходил бы гораздо проще.
Проблема: излишняя краткость и непоследовательность
Помните школу? А формулу дискриминанта? А как она доказывается/выводится? Один из способов: чисто алгебраический. Берем уравнение
А теперь представьте ситуацию, ученику говорят: «сегодня мы научимся решать уравнения с
Очень много примеров, которые органично приводят к решению уравнения через полные квадраты. Потом уже можно вводить дискриминант (как простой алгоритм для решения уравнений, когда ученики устанут выделять полные квадраты), и Виет с четным дискриминантом как «ноу-хау».
Схожий подход используется в учебниках. Увы, не во всех. И не везде видна четкая последовательность. По слухам, некоторые авторы теряли листы черновиков в трамваях, а потом заменяли утерянные куски выражениями вроде «легко показать, что...». В итоге, вместо спокойных прыжков с примера на пример, студенты
Личный пример (просили в оригинальном посте). На первом курсе матана я страдал. Спокойно решая примеры, совершенно не усваивал теорию. Попросил однокурсника о помощи с вычислением длины кривой через интеграл. Тот взял бутылку пива, нарисовал рандомную кривую, спрямил бесконечно малыми отрезками, выделил один такой отрезок, достроил его до треугольника dl, dx, dy, и спросил: «Теорему Пифагора помнишь»? Дальше все было просто.

Я его спросил: а почему такое не показывают на парах/в учебниках? Он показал пару контрпримеров, объяснил зачем нужен формализм в матане — и у меня попёрло. Я просто читал теорему, выделял главное, писал/решал тривиальные примеры, потом разбирался с формализмом — и реально понимал, о чем идет речь.
Я не знаю, можно ли массово использовать подход общий обзор => контрпримеры => формализм. Не знаю, сколько и какой теории/практики нужно набрать студенту до «прорыва», с трудом представляю себе, как ставить педагогические эксперименты на эту тему, и сколько труда придется вложить в исследования. Но память о том объяснении живет уже 10 лет. И спустя все эти годы я стараюсь слушателям сначала дать общую картину, потом показать проблемы, и потом уже погружаться в детали.
Вы скажете, мои персональные ощущения могут быть ошибочными. Помимо них у меня есть только аналогичные идеи от Хэмминга:
… я мог изучать, какие методы были эффективны, а какие нет. Посещая встречи, я уже изучал, почему некоторые работы запоминают, а большинство – нет. Технический человек хочет дать очень ограниченную техническую лекцию. Как правило, аудитория хочет широкую лекцию общего характера и хочет гораздо больше общего обзора и введений, чем желает дать спикер. В результате многие лекции неэффективны. Лектор называет тему и внезапно ныряет в детали. Мало кто может уследить. Вы должны нарисовать общую картину, чтобы рассказать, почему это важно, и затем медленно развернуть эскиз того, что было сделано. Тогда большее число людей скажут: «Да, Джо сделал это» или «Мэри сделала то, я действительно вижу, о чём это. Да, Мэри дала по-настоящему хорошую лекцию, я понимаю, что она сделала». Как правило же, люди дают очень ограниченную, безопасную лекцию; это обычно неэффективно. Кроме того, многие лекции переполнены информацией…
Идеи россыпью
Должен заметить, мой опыт в преподавании крайне ограничен. Возможно, вы заметили, что я ограничился школьной программой и матанализом. Увы, это те области, где у меня была возможность соприкоснуть теорию с практикой. Я до сих пор не понимаю сути определителя в алгебре, не осознаю проективную геометрию, и лишь полгода назад начал проникаться матрицами (сразу после практики, ага). Неплохая иллюстрация поговорки «теория без практики мертва».Как мне рассказывали, в НМУ новый концепт всегда вводился с десятком вопросов. А что если так? А если этот пункт условия не выполнен? Что нужно, чтоб дополнить наш концепт до полугруппы? Слушателям давали поиграть с предметом. Привыкнуть. Думаю, над опытом НМУ стоит хорошенько задуматься.
Наверняка в высших разделах математики подход «сначала пример, потом абстракция» не сработает. Так, примеры «на бумажке» никак не помогают осознать RSA. Зато растущее время работы программы с увеличением длины ключа помогает прочувствовать чисто практические аспекты.
Есть опасение, что «идеальные/тепличные» школьные учебники приведут к шоку при работе с «вышкой». Вроде как, «хардкорщика надо воспитывать смолоду».
Довольно сложно разрабатывать курсы, надеясь что студенты уже что-то знают. Чем больше требуемая база, тем больше вероятность, что что-то из базы студентом недопонято.
Говорят, пик формы математиков — 30 лет. После 30 уже можно нагружать их писать учебники, дав в напарники спеца методиста.
Текущие технологии позволяют писать тексты командой, используя git. На хабре недавно проскакивала статья про компиляцию TeXa в pdf в процессе CI. Уверен, авторский коллектив с хорошим инструментарием может писать гораздо более качественные учебники.
Помимо профессоров, учителей, студентов и школьников в математике есть государства. И регламенты. И требования. И сертификации. Все это влияет на учебники, авторов, преподавателей, и качество подачи материала.
Как можно улучшить подачу материала в математических текстах
В текущих (российских) реалиях — никак. Энтузиасты есть, профессионалы есть, мотивации нет.
У профессоров математики хватает своих задач, чтобы писать учебники. Иногда не хватает чисто гуманитарных скиллов, писать книги в университетах не учат. Плюс, профессиональная деформация: «очевидное» для профессора может быть неподъёмно для студентов. Учителя математики загружены текучкой. И бумагами. И репетиторством. Про государство промолчу. Почти не сталкивался с его представителями, так что говорить нечего. Разве что, упомяну политику замену учебников каждые три года. После школы я хотел сдать свои учебники в библиотеку, мне сказали «они старые, нельзя их хранить». Мотивации писать хорошие учебники такой подход не добавляет.
Иными словами, от системы образования лично я позитивных подвижек не жду. Надеюсь, конечно, но не жду. Что выручает — проблески ИТ и прочей инженерии. На одной из математических конференций я получил от одного из участников книгу по компьютерной графике. Автор работал в конторе, разрабатывающей графическое ядро какой-то чертежной системы, и материал был вполне неплох. Математика была не «чистая», прикладная, но сам факт существования хорошего учебного материала безусловно радует.
Еще один подход: преподаватели от компаний, работающие в ВУЗах. Математических текстов от этих ребят ждать не приходится, специфика не та. Разве что, геймдевщики соберутся написать мануал по теорверу, или графики напишут про алгебру/геометрию необходимую для разработки тех же САПРов
Наконец, есть различные негосударственные образовательные платформы, вроде той же Coursera. Эти ребята могут все, ибо работают за деньги, конкурируют, быстро получают обратную связь. Но у них свой недостаток: формат подачи данных иной. Непосредственно текстов они не пишут.
И к чему все придет в будущем?
Самому интересно. Может, всё останется как есть. Может, будет уход от текстов в математике. А может, авторы проникнутся идеей "
Upd1. Вставил фото с вычислением длины участка кривой.
Upd2. В комментариях часто упоминают, что текст посвящен проблемам преподавания, а не профессиональной математике. Причина проста: большая часть виденных мною «профессиональных» работ в плане подачи материала не отличается от учебников. При этом, школьная\университетская литература известна большинству на хабре, а «профессиональная» — процентам.