Комментарии 9
Очень хороший обзор. Тому, кто не знает сего - пАзор!
Но затронута только линейная алгебра в основном. А как же теория групп и алгебры над полями?
Я бы заменил Кострикина на Куроша в литературе. Кострикин достаточно сложен для начинающих.
А где сам курс, можно узнать?
Сам курс преподаётся, например, у нас в школе https://shadhelper.com/shad_all . Либо можно попробовать слушать курс в НМУ (Независимый московский университет). В нём бесплатные занятия, но нужна очень сильная база.
Фактическая ошибка: автор не является сотрудником мехмата (официальный список, включая бывших сотрудников).
КМК, тут всё скомканно, и чем перечислять список терминов и глав примерно по порядку программы экзамена курса алгебры мехмата, проще дать на него ссылку.
Для изучения алгебры в зависимости от подходящего уровня и стиля изложения я бы советовал такие варианты:
Винберг, "Курс алгебры" (в первую очередь!)
Городенцев, "Алгебра" (для более смелых)
Ван дер Варден "Алгебра" (доступный очень хороший старый учебник, изложение отличается от современных по стилю, для базового освоения алгебры ещё как хватит; незаслуженно редко упоминается)
упомянутые выше книги Куроша и Кострикина
Если (а лучше — когда) этих базовых книг окажется мало, и будет хотеться больше алгебры, попробуйте почитать Харриса "Введение в алгебраическую геометрию", чтобы увидеть, как красиво алгебра продолжается за пределы стандартного курса и что на самом деле следует за школьной планиметрией в современной науке (спойлер: она вся становится частью алгебры, но при этом все геометрические объекты не только остаются, а становятся интереснее и разнообразнее, взять хоть эллиптические кривые, которые имеют очень большие применения к современной криптографии).
По части приложений скажу, что тут и правда в тексте не перечислено ничего явного (видимо, практическая мотивация у автора целью не является), но чем больше и глубже знаешь алгебру, тем больше всего может помочь даже из достаточно абстрактного, потому что все вычисления в явном виде об алгебре и/или численных методах. Например, мне улучшить качество модели в рамках Speech Recognition как-то помогло бирациональное преобразование пространства параметров модели. Помогло сделать раздутия с цетрами с центрах кластеров и сдуть лишние образовавшиеся дивизоры, так что кластеры стали иметь более хороший вид, и нейросеть начала лучше учиться за счёт перепараметризации, каким не учат на вайтишных курсах. Но если вы знаете алгебру и начала алгебраической геометрии, то вы можете придумать такое сами, поковырявшись в данных. Алгебра очень часто о том, что мы можем вычислить явно (если не учитывать большие базисы Грёбнера и вот такое), так что применимость в приложениях ограничена только вашей изобретательностью и знанием алгебры и алгоритмов.
Вдогонку пример (статья в соавторстве с Лёшей Савватеевым), как задачу из геометрии с треугольничками решает настоящая глубокая алгебра, и попутно пригождаются и сравнения по модулю, и комплексные числа, и Великая Теорема Ферма.
И ещё вдогонку: алгебре ещё лучше, чем на мехмате (и где-либо), учат в НМУ бесплатно без смс и регистрации, ограничение только по вместимости здания. Неважен возраст, социальный статус, образование и что угодно ещё. Хотите очный курс алгебры — вот.
Алгебра — мать порядка!
От алгебры школьной — к университетской