В научно‑популярных статьях и докладах, обучающих материалах по системам компьютерного зрения упор нередко делается на основную компоненту — тяжелые (или не очень) нейронные сети, которые неким волшебным образом обрабатывают картинку, и на выходе отдают результат.
Однако каждый ли вход в сеть стоит обрабатывать? Обучающие датасеты заранее подобраны и размечены, мусора и шума там чаще всего относительно мало, чего нельзя сказать о данных на входе в реально работающие системы. Особенно если данные загружаются обычными пользователями.
Мы не можем гарантировать, что сеть корректно обработает любой вход. Да, есть способы оценить, насколько модель уверена в своем ответе, но уже после обработки входа, когда мы потратили вычислительные ресурсы. Можем ли мы сказать заранее, что корректно обработать изображение не получится, что оно скорее всего не содержит достаточно информации? Давайте попробуем разобраться на примере реальной задачи.