Как стать автором
Поиск
Написать публикацию
Обновить
0.2

Hadoop *

Фреймворк для распределённых приложений

Сначала показывать
Порог рейтинга
Уровень сложности

Как геокодировать миллион точек на Spark по-быстрому?

Время на прочтение9 мин
Количество просмотров5.5K
В моем предыдущем проекте перед нами встала задача провести обратное геокодирование для множества пар географических координат. Обратное геокодирование — это процедура, которая паре широта-долгота ставит в соответствие адрес или название объекта на карте, к которому принадлежит или близка заданная координатами точка. То есть, берем координаты, скажем такие: @55.7602485,37.6170409, и получаем результат либо «Россия, Центральный федеральный округ, Москва, Театральная площадь, дом такой-то», либо например «Большой театр».

Если на входе адрес или название, а на выходе координаты, то эта операция — прямое геокодирование, об этом мы, надеюсь, поговорим позже.

В качестве исходных данных у нас на входе было примерно 100 или 200 тысяч точек, которые лежали в кластере Hadoop в виде таблицы Hive. Это чтобы был понятен масштаб задачи.

В качестве инструмента обработки в конце концов был выбран Spark, хотя в процессе мы попробовали как MapReduce, так и Apache Crunch. Но это отдельная история, возможно заслуживающая своего поста.
Читать дальше →

На каком железе анализировать огромный вал информации?

Время на прочтение8 мин
Количество просмотров8.3K
Мы – Big Data в МТС и это наш первый пост. Сегодня расскажем о том, какие технологии позволяют нам хранить и обрабатывать большие данные так, чтобы всегда хватало ресурсов для аналитики, и затраты на закупки железа не уходили в заоблачные дали.

О создании центра Big Data в МТС задумались в 2014 году: появилась необходимость масштабирования классического аналитического хранилища и BI-отчетности над ним. На тот момент движок для обработки данных и BI были SASовские – так сложилось исторически. И хотя потребности бизнеса в хранилище были закрыты, со временем функционал BI и ad-hoc-аналитики поверх аналитического хранилища разросся настолько, что нужно было решать вопрос увеличения производительности, учитывая, что с годами количество пользователей увеличилось в десятки раз и продолжало расти.

В результате конкурса в МТС появилась MPP-система Teradata, покрывающая потребности телекома на тот момент. Это стало толчком к тому, чтобы попробовать что-то более популярное и open source’вое.

image

На фото — команда Big Data МТС в новом офисе «Декарт» в Москве
Читать дальше →

Как мы строим систему обработки, хранения и анализа данных в СИБУРе

Время на прочтение6 мин
Количество просмотров21K
В начале 2018 года у нас активно пошел процесс цифровизации производства и процессов в компании. В секторе нефтехимии это не просто модный тренд, а новый эволюционный шаг в сторону повышения эффективности и конкурентоспособности. Учитывая специфику бизнеса, который и без всякой цифровизации показывает неплохие экономические результаты, перед «цифровизаторами» стоит непростая задача: всё-таки менять устоявшиеся процессы в компании — довольно кропотливая работа.

Наша цифровизация началась с создания двух центров и соответствующих им функциональных блоков.

Это «Функция цифровых технологий», в которую включены все продуктовые направления: цифровизация процессов, IIoT и продвинутая аналитика, а также центр управления данными, ставший самостоятельным направлением.



И вот как раз главная задача дата-офиса заключается в том, чтобы полноценно внедрить культуру принятия решений, основанных на данных (да, да, data-driven decision), а также в принципе упорядочить всё, что касается работы с данными: аналитика, обработка, хранение и отчетность. Особенность в том, что все наши цифровые инструменты должны будут не только активно использовать собственные данные, то есть те, которые генерируют сами (например, мобильные обходы, или датчики IIoT), но и внешние данные, с четким пониманием, где и зачем их нужно использовать.

Меня зовут Артем Данилов, я руководитель направления «Инфраструктура и технологии» в СИБУРе, в этом посте я расскажу, как и на чем мы строим большую систему обработки и хранения данных для всего СИБУРа. Для начала поговорим только о верхнеуровневой архитектуре и о том, как можно стать частью нашей команды.

Тестирование и отладка MapReduce

Время на прочтение5 мин
Количество просмотров6.2K
В «Ростелекоме» мы используем Hadoop для хранения и обработки данных, загруженных из многочисленных источников с помощью java-приложений. Сейчас мы переехали на новую версию hadoop с Kerberos Authentication. При переезде столкнулись с рядом проблем, в том числе и с использованием YARN API. Работа Hadoop с Kerberos Authentication заслуживает отдельной статьи, а в этой мы поговорим об отладке Hadoop MapReduce.


Читать дальше →

Apache NiFi: что это такое и краткий обзор возможностей

Время на прочтение7 мин
Количество просмотров147K
Сегодня на тематических зарубежных сайтах о Big Data можно встретить упоминание такого относительно нового для экосистемы Hadoop инструмента как Apache NiFi. Это современный open source ETL-инструмент. Распределенная архитектура для быстрой параллельной загрузки и обработки данных, большое количество плагинов для источников и преобразований, версионирование конфигураций – это только часть его преимуществ. При всей своей мощи NiFi остается достаточно простым в использовании.

image

Мы в «Ростелекоме» стремимся развивать работу с Hadoop, так что уже попробовали и оценили преимущества Apache NiFi по сравнению с другими решениями. В этой статье я расскажу, чем нас привлек этот инструмент и как мы его используем.
Читать дальше →

Apache Spark — достоинства, недостатки, пожелания

Время на прочтение13 мин
Количество просмотров19K
Мне давно хотелось изложить свои впечатления об Apache Spark, и тут как раз попалась на глаза вот эта статья от сотрудника Pivotal Robert Bennett, опубликованная совсем недавно, 26 июня 2018.

Это не будет перевод, а скорее все-таки мои впечатления и комментарии на тему.
Читать дальше →

Распределенное хранилище данных в концепции Data Lake: администрирование кластера

Время на прочтение4 мин
Количество просмотров2.4K

Тема администрирования кластера Cloudera достаточно широка и осветить ее в рамках одной статьи не представляется возможным. В этом посте остановимся на инструкциях по решению наиболее часто встречающихся задач, связанных с кластером и установленными в него сервисами, а для более глубокого погружения рекомендую обратиться к официальной документации и форуму. Там можно найти информацию практически по любому вопросу.



Читать дальше →

Теория и практика использования HBase

Время на прочтение13 мин
Количество просмотров13K
Добрый день! Меня зовут Данил Липовой, наша команда в Сбертехе начала использовать HBase в качестве хранилища оперативных данных. В ходе его изучения накопился опыт, который захотелось систематизировать и описать (надеемся, что многим будет полезно). Все приведенные ниже эксперименты проводились с версиями HBase 1.2.0-cdh5.14.2 и 2.0.0-cdh6.0.0-beta1.

  1. Общая архитектура
  2. Запись данных в HBASE
  3. Чтение данных из HBASE
  4. Кэширование данных
  5. Пакетная обработка данных MultiGet/MultiPut
  6. Стратегия разбивки таблиц на регионы (спилитинг)
  7. Отказоустойчивость, компактификация и локальность данных
  8. Настройки и производительность
  9. Нагрузочное тестирование
  10. Выводы
Читать дальше →

Сравнительный анализ HDFS 3 с HDFS 2

Время на прочтение3 мин
Количество просмотров4.4K
В нашей компании СберТех (Сбербанк Технологии) на данный момент используется HDFS 2.8.4 так как у него есть ряд преимуществ, таких как экосистема Hadoop, быстрая работа с большими объемами данных, он хорош в аналитике и многое другое. Но в декабре 2017 года Apache Software Foundation выпустила новую версию открытого фреймворка для разработки и выполнения распределённых программ — Hadoop 3.0.0, которая включает в себя ряд существенных улучшений по сравнению с предыдущей основной линией выпуска (hadoop-2.x). Одно из самых важных и интересующих нас обновлений это поддержка кодов избыточности (Erasure Coding). Поэтому была поставлена задача сравнить данные версии между собой.

Компанией СберТех на данную исследовательскую работу было выделено 10 виртуальных машин размером по 40 Гбайт. Так как политика кодирования RS(10,4) требует минимум 14 машин, то протестировать ее не получится.

На одной из машин будет расположен NameNode помимо DataNode. Тестирования будет проводиться при следующих политиках кодирования:

  • XOR(2,1)
  • RS(3,2)
  • RS(6,3)

А также, используя репликацию с фактором репликации равным 3.

Размер блока данных был выбран равным 32 Мб.
Читать дальше →

Машинное обучение против кредитных рисков, или «давай, Джини, давай»

Время на прочтение4 мин
Количество просмотров7.1K
Банк — это по определению «кредитно-денежная организация», и от того, насколько успешно эта организация выдает и возвращает кредиты, зависит ее будущее. Чтобы успешно работать с кредитами, нужно понимать финансовое положение заемщиков, в чем помогают факторы кредитного риска (ФКР). Кредитные аналитики выявляют их в огромных массивах банковской информации, обрабатывают эти факторы и прогнозируют дальнейшие изменения. Обычно для этого используется описательная и диагностическая аналитика, но мы решили подключить к работе инструменты машинного обучения. О том, что получилось, читайте в посте.


Читать дальше →

Распределенное хранилище данных в концепции Data Lake: установка CDH

Время на прочтение7 мин
Количество просмотров6K

Продолжаем делиться опытом по организации хранилища данных, о котором начали рассказывать в предыдущем посте. На этот раз хотим поговорить о том, как мы решали задачи по установке CDH.



Читать дальше →

Распределенное хранилище данных в концепции Data Lake: с чего начать

Время на прочтение12 мин
Количество просмотров9.3K
В мире энтерпрайза наступило пресыщение фронтовыми системами, шинами данных и прочими классическими системами, которые внедряли все кому не лень последние 10-15 лет. Но есть один сегмент, который до недавнего времени был в статусе «все хотят, но никто не знает, что это». И это Big Data. Красиво звучит, продвигается топовыми западными компаниями – как не стать лакомым кусочком?



Но пока большинство только смотрит и приценивается, некоторые компании начали активно внедрять решения на базе этого технологического стека в свой IT ландшафт. Важную роль в этом сыграло появление коммерческих дистрибутивов Apache Hadoop, разработчики которых обеспечивают своим клиентам техническую поддержку. Ощутив необходимость в подобном решении, один из наших клиентов принял решение об организации распределенного хранилища данных в концепции Data Lake на базе Apache Hadoop.
Читать дальше →

Грузим терабайты бочками или SparkStreaming vs Spring+YARN+Java

Время на прочтение7 мин
Количество просмотров8.8K

В рамках проекта интеграции GridGain и хранилища на базе Hadoop (HDFS + HBASE) мы столкнулись с задачей получения и обработки существенного объема данных, примерно до 80 Тб в день. Это необходимо для построения витрин и для восстановления удаленных в GridGain данных после их выгрузки в наше долговременное хранилище. В общем виде, можно сказать, что мы передаём данные между двумя распределёнными системами обработки данных при помощи распределённой системы передачи данных. Соответственно, мы хотим рассказать о тех проблемах, с которыми столкнулась наша команда при реализации данной задачи и как они были решены.

Так как инструментом интеграции является кафка (весьма подробно о ней описано в статье Михаила Голованова), естественным и легким решением тут выглядит использование SparkStreaming. Легким, потому что не нужно особо беспокоиться о падениях, переподключениях, коммитах и т.д. Spark известен, как быстрая альтернатива классическому MapReduce, благодаря многочисленным оптимизациям. Нужно лишь настроиться на топик, обработать батч и сохранить в файл, что и было реализовано. Однако в ходе разработки и тестирования была замечена нестабильность работы модуля приема данных. Для того чтобы исключить влияние потенциальных ошибок в коде, был произведен следующий эксперимент. Был выпилен весь функционал обработки сообщений и оставлено только прямое сохранение сразу в avro:
Читать дальше →

Ближайшие события

Проблемы матчинга и как можно с ними бороться

Время на прочтение8 мин
Количество просмотров19K
Добрый день! Меня зовут Алексей Булавин, я представляю центр компетенций Сбертеха по Big Data. Представители бизнеса, владельцы продуктов и аналитики часто задают мне вопросы по одной и той же теме — матчинг. Что это такое? Зачем и как его делать? Особенно популярен вопрос «Почему он может не получиться?» В этой статье я постараюсь на них ответить.

Читать дальше →

Обзор кейсов интересных внедрений Big Data в компаниях финансового сектора

Время на прочтение11 мин
Количество просмотров23K

Кейсы практического применения Больших данных
в компаниях финансового сектора


Зачем эта статья?

В данном обзоре рассматриваются случаи внедрения и применения Больших данных в реальной жизни на примере «живых» проектов. По некоторым, особенно интересным, во всех смыслах, кейсам осмелюсь дать свои комментарии.

Диапазон рассмотренных кейсов ограничивается примерами, представленными в открытом доступе на сайте компании Cloudera.

Что такое «Большие данные»


Есть в технических кругах шутка, что «Большие данные» это данные, для обработки которых недостаточно Excel 2010 на мощном ноутбуке. То есть если для решения задачи вам надо оперировать 1 миллионом строк на листе и более или 16 тысяч столбцов и более, то поздравляем, ваша данные относятся к разряду «Больших».

Среди множества более строгих определений приведем, например следующее: «Большие данные» — наборы данных, которые настолько объемны и сложны, что использование традиционных средств обработки невозможно. Термин обычно характеризует данные, над которыми применяются методы предиктивной аналитики или иные методы извлечения ценности из данных и редко соотносится только с объемом данных.
Читать дальше →

Спецпроекты в Сбербанк-Технологиях: как в банках готовят Hadoop, Spark, Kafka и прочую Big Data

Время на прочтение27 мин
Количество просмотров32K
Все мы любим посмеяться над дремучим legacy на Java, которое якобы живёт в банках. После прочтения этой статьи у вас появится понимание другой грани этой истории. Оказывается, конкретно в Сбербанк-Технологиях есть целые большие отделы, занимающиеся прорывными технологиями и направлениями, включая Big Data и Machine Learning. Более того, скоро мы можем оказаться в мире, где Machine Learning встроен чуть ли не в каждую кофеварку. К добру или к худу, но Internet of Things, следящий за нами тысячью глаз из каждого банкомата, — куда более актуальное прочтение этой старой шутки.

Как вы, наверное, заметили, я пишу на Хабре про виртуальные машины, внутренности OpenJDK, JVM и другую системную разработку. Почему эта статья — о банковском софте? Потому что это актуально как никогда. Вот представьте, вы такой весь в белом, дважды Data Scientist и четырежды важный гуру JIT-компиляции. Что дальше? Кому всё это может быть нужно прямо здесь и сейчас? Часто слышу рассуждения на тему: «Вот сейчас ты ковыряешься в своей любимой Java, а завтра никто тебя на работу не возьмёт». Это очень забавное и опасное заблуждение. Благодаря таким товарищам, о которых пойдёт речь в этой статье, работа у нас будет всегда.

Конечно, на слово мне никто верить не должен, поэтому специально для Хабра я сорвался на самолёт в Москву, чтобы пообщаться с начальником отдела разработки спецпроектов в Сбербанк-Технологиях. Вадим Сурпин потратил на меня чуть больше часа, а в этом интервью будут только самые важные мысли из нашего разговора. Кроме того, удалось уговорить Вадима подать заявку на участие в нашей конференции JBreak. Более того, Вадим — первый человек, который показался мне достойным инвайта на Хабр: vadsu (инвайт был честно заработан статьей про хакинг ChromeDriver).

Читать дальше →

Что посмотреть на выходных? Обзор лучших докладов в свободном доступе. Часть вторая, JBreak 2017

Время на прочтение19 мин
Количество просмотров14K

Что можно посмотреть вечером или на этих выходных? Можно смотреть какие-нибудь фильмы, а можно — наш непрекращающийся сериал под названием «Java-конференции». Единственный сериал, после просмотра которого у вас может радикально увеличиться зарплата.


Вчерашняя статья про JPoint 2017 оказалась удивительно успешной. У неё почти не было комментариев, но на данный момент — 88 закладок. То есть статья попала в цель: люди добавляют в закладки и смотрят — ура. Буквально в первый час её пришел читать сам Сатана.


Сегодня мы будем действовать по старой схеме: я для вас отсматриваю подряд 10 докладов, делаю короткое описание содержимого, чтобы неинтересное можно было выбросить. Кроме того, с сайтов собираю ссылки на слайды и описания. Полученное сортирую и выдаю в порядке увеличения рейтинга — то есть в самом низу будет самый крутой доклад. Оценки — это не лайки на YouTube, а наша собственная оценочная система, она круче лайков.



Читать дальше →

Hadoop 3.0: краткий обзор новых возможностей

Время на прочтение2 мин
Количество просмотров12K
Apache Software Foundation объявили о выходе новой версии открытого фреймворка для разработки и выполнения распределённых программ — Hadoop 3.0. Это первый крупный релиз с момента выпуска Hadoop 2 в 2013 году. Подробнее о некоторых новых возможностях Hadoop 3.0 и о том, что предложат последующие версии, расскажем далее.

Читать дальше →

Big Data в Hadoop по подписке в облаке SAP

Время на прочтение10 мин
Количество просмотров3.9K
Сегодня мы расскажем об одном из сервисов SAP, который характеризует наш новый подход к созданию продуктов и работе с клиентами. Это решение SAP Cloud Platform Big Data Services, которое предлагает клиентам возможность работать с большими данными в Hadoop по модели подписки на облачное приложение.

В первой статье мы сделаем обзор того, как анализ Big Data может пригодиться бизнесу на практике, как отличаются облачного и on-premise размещения Hadoop, а про основные функции, сервисы и технологии в SAP Cloud Platform Big Data Services. В следующих статьях мы подробнее разберём технологические особенности и отдельные сервисы внутри данного решения.

Big Data в бизнесе

image

Глубокое обучение при помощи Spark и Hadoop: знакомство с Deeplearning4j

Время на прочтение12 мин
Количество просмотров15K
Здравствуйте, уважаемые читатели!

Мы вполне убедились в мегапопулярности глубокого обучения (Deep Learning) на языке Python в нашей целевой аудитории. Теперь предлагаем поговорить о высшей лиге глубокого обучения — то есть, о решении этих задач на языке Java при помощи библиотеки Deeplearning4j. Мы перевели для вас июньскую статью из блога компании Cloudera, где в интереснейших подробностях рассказано о специфике этой библиотеки и о глубоком обучении в Hadoop и Spark.

Приятного чтения.
Читать дальше →