Обновить
212.79

Алгоритмы *

Все об алгоритмах

Сначала показывать
Порог рейтинга
Уровень сложности

Быстрое индексное умножение по модулю

Время на прочтение4 мин
Количество просмотров38K

Введение


Обычно данный материал приводится с обилием формул и рассчитан больше на математиков. Я постараюсь расписать его наиболее доступно на простых численных примерах с точки зрения применения этого метода в микроэлектронике на аппаратном уровне. В численных примерах для наглядности будет использоваться значение p = 11.

Постановка задачи


Положим, что нам требуется выполнить умножение следующего вида: res = (a*b) mod p, где
0 <= a < p
0 <= b < p
p – простое число.
mod p – операция нахождения остатка по модулю.
И выполнить его надо на низком уровне, где нет как таковой операции умножения и операции взятия остатка от деления или же они реализуются достаточно сложно (например, в электронном устройстве).
Подробности

Алгоритм предсказывает преступления, отслеживая мобильные телефоны

Время на прочтение2 мин
Количество просмотров5.6K
Уже много лет учёные экспериментируют с алгоритмами, способными предсказывать преступность. Предполагается, что преступники склонны повторять успешные действия — по крайней мере, они не используют ГСЧ для выбора места и времени преступлений, так что их действия предсказуемы по определению.

Например, год назад калифорнийский город Санта-Крус первым в мире внедрил математическую модель расчёта вероятности преступлений, которая каждый день составляет новый маршрут для патрульных машин, основываясь на статистике преступлений по улицам. Учитываются день недели, время суток, наличие/отсутствие футбольных матчей по ТВ и другие факторы.

Исследователь из Бирмингемского университета Мирко Мусолези (Mirco Musolesi) применил совершенно другой подход. Его метод основан не на статистике, а на оперативных данных из сетей сотовой связи. Мусолези начал с того, что научил алгоритм с высокой степенью вероятности прогнозировать перемещения каждого абонента: он даже выиграл конкурс Nokia Mobile Data, наиболее точно предсказав перемещения 25-ти добровольцев по сигналам их телефонов, истории звонков и текстовым сообщениям. Иногда алгоритм прогнозирует координаты пользователя с точностью до 20 м2.
Читать дальше →

Понятие о структурной адаптации и введение в «чистое обобщение»

Время на прочтение7 мин
Количество просмотров14K
Продолжим серию статей «ИИ для чайников». Если в прошлой статье мы попробовали отграничить людей, решающих задачи «оракулов сильного ИИ» от задач «слабого ИИ», и показать решение какого рода задач дает больше, чем лирические «откровения». Одну из таких задач мы назвали «задача двух учителей».

То теперь мы посмотрим на неё под другим углом зрения. Как я говорил эта задача встречается в разных аспектах. А заодно мы посмотрим как глубоко заблуждаются инженеры «слабого ИИ» в текущей тенденции понимания задач ИИ. К сожалению, теперь образование в этой области поощряет создавать убогие формализмы и зауживать взгляд на проблематику ИИ. С одним из «выкидышей» такого рода образования мы и дискутировали в прошлой статье. Но таких людей много и напрягает тенденция при «штамповке» такого рода «образованных студентов».

Читать дальше →

Аппроксимация изображений генетическим алгоритмом при помощи EvoJ

Время на прочтение8 мин
Количество просмотров13K
В этой статье я расскажу, как можно применить генетический алгоритм для аппроксимации изображений полигонами. Как и в своих предыдущих статьях, использовать для этой цели я буду собственный фреймворк EvoJ, о котором уже писал здесь и здесь.


Читать дальше →

Декодирование капчи на Python

Время на прочтение12 мин
Количество просмотров85K
Это перевод и форма повествования от первого лица сохранена. Автор — Бен Бойтер, бакалавр информационных технологий в Университете Чарльза Стерта (CSU).


Большинство людей не в курсе, но моей диссертацией была программа для чтения текста с изображения. Я думал, что, если смогу получить высокий уровень распознавания, то это можно будет использовать для улучшения результатов поиска. Мой отличный советник доктор Гао Джунбин предложил мне написать диссертацию на эту тему. Наконец-то я нашел время написать эту статью и здесь я постараюсь рассказать о всем том, что узнал. Если бы только было что-то подобное, когда я только начинал…

Как я уже говорил, я пытался взять обычные изображения из интернета и извлекать из них текст для улучшения результатов поиска. Большинство моих идей было основано на методах взлома капчи. Как всем известно, капча — это те самые всех раздражающее штуки, вроде «Введите буквы, которые вы видите на изображении» на страницах регистрации или обратной связи.

Капча устроена так, что человек может прочитать текст без труда, в то время, как машина — нет (привет, reCaptcha!). На практике это никогда не работало, т. к. почти каждую капчу, которую размещали на сайте взламывали в течение нескольких месяцев.

У меня неплохо получалось — более 60% изображений было успешно разгадано из моей небольшой коллекции. Довольно неплохо, учитывая количество разнообразных изображений в интернете.

Читать дальше →

Резюме проблемы «двух и более учителей» и субъективное мнение о ИИ-сообществе

Время на прочтение9 мин
Количество просмотров5.2K
Пока я тут излагал мысль она несколько растеклась по статьям

1. Модель функционального разделения сознания и бессознательного. Введение
2. Модель проявления сознания или ИНС без эффекта забывания
3. Проблема «двух и более учителей». Первые штрихи
4. Обучение с подкреплением на нейронных сетях. Теория

казалось аудитория имеет нужные знания, все таки у нас цвет общества — программисты :) Но увы… последний опрос показал, что далеко не все программисты в курсе ИИ-проблематики. А хамоватые студенты набежавшие на эти статьи в комментариях — еще не доучились.

Попробуем подытожить и считайте это расширенная статья обещанная в опросе. А заодно мне сказали, что в ИИ-сообществе есть серьезные проблемы. После ряда комментариев — да видимо действительно есть. Попробуем посмотреть на тенденцию.

Читать дальше →

Используем быстрое возведение матриц в степень для написания очень быстрого интерпретатора простого языка программирования

Время на прочтение6 мин
Количество просмотров39K
Недавно на хабре появилась неплохая статья про вычисление N-ного числа фибоначи за O(log N) арифметических операций. Разумный вопрос, всплывший в комментариях, был: «зачем это может пригодиться на практике». Само по себе вычисление N-ого числа фибоначи может и не очень интересно, однако подход с матрицами, использованный в статье, на практике может применяться для гораздо более широкого круга задач.

В ходе этой статьи мы разберем как написать интерпретатор, который может выполнять простые операции (присвоение, сложение, вычитание и урезанное умножение) над ограниченным количеством переменных с вложенными циклами с произвольным количеством итераций за доли секунды (конечно, если промежуточные значения при вычислениях будут оставаться в разумных пределах). Например, вот такой код, поданный на вход интерпретатору:

loop 1000000000
  loop 1000000000
    loop 1000000000
      a += 1
      b += a
    end
  end
end
end


Незамедлительно выведет a = 1000000000000000000000000000, b = 500000000000000000000000000500000000000000000000000000, несмотря на то, что если бы программа выполнялась наивно, интерпретатору необходимо было бы выполнить октиллион операций.
Читать дальше →

Обучение с подкреплением на нейронных сетях. Теория

Время на прочтение4 мин
Количество просмотров26K
Я тут написал статью Проблема «двух и более учителей». Первые штрихи, пытаясь показать одну сложную нерешенную проблему. Но первые штрихи оказались немного за сложными. Поэтому я решил для читателей немного разжевать теорию. Увы, сейчас видимо учат/(учатся ?) несколько шаблонно — типа как для каждой задачи свои методы.

Так мне указали, что для задачи классификации — нейронные сети (обучение с учителем), генетические алгоритмы (обучение без учителя) — задача кластеризации, а еще есть обучение с подкреплением (Q-обучение) — как задача агента, который бродит и что-то делает. И вот такими шаблонами многие и судят.

Попробуем разобраться, что дает применение нейронных сетей, как некоторые заявляют, к задаче которую они не могут решить — а именно к обучению с подкреплением.

И заодно проанализируем диссертацию Бурцев М.С., «Исследование новых типов самоорганизации и возникновения поведенческих стратегий», в которой не больше не меньше красиво сделано именно применение простеньких нейронных сетей в задаче обучения с подкреплением.
Читать дальше →

Эвристика в составлении расписания занятий

Время на прочтение4 мин
Количество просмотров12K
Недавно здесь проскакивала тема расписания занятий, и мне захотелось рассказать о своем опыте построения алгоритма составления расписания для ВУЗа, а точнее, больше об эвристике, которую применил.
Читать дальше →

Почему компьютерное зрение очень мало используется на практике

Время на прочтение6 мин
Количество просмотров20K
На самом деле правильнее было бы назвать «машинное зрение», но так я думаю понятнее будет, если кто не знает то это не охранное видеонаблюдение, а распознавание или измерение чего либо c помощью камер. Существует много задач и областей, где компьютерное зрение было бы очень востребовано и могло бы использоваться повсеместно, но на практике оно используется очень редко.

Я реализовал несколько проектов в этой области для решения разных задач, конкретно это вычисление и подсчет площадей, контроль качества продукции, причем разной и в разных отраслях таких как: фигурная порезка и раскрой листов ДСП, ДВП, МДФ, измерение площадей шкурок животных на производства изделий из кожи и др.

Задача вычисления площади может показаться довольно сложной. Если подходить строго математически, то да, например, посчитать площадь квадрата или прямоугольника очень просто умножаем длину на ширину и готово, если треугольника чуть сложнее, а вот других криволинейных фигур может быть очень сложно.
Мой алгоритм подсчета площади настолько прост, что его можно реализовать без всяких библиотек и т.п. буквально в десять строк кода, по сути это простейший детектор движения только с калибровкой камеры. Камера жестко фиксируется над местом, куда подается продукция, делается снимок фона (без продукции), например, белый стол, цвета пикселей загоняются в массив. Далее на стол подается или кладется образец, например какая-то коробка. Далее делается второй снимок с коробкой, цвета второго кадра пишутся в другой массив и затем сравниваются значения цветов, количество отличающихся пикселей суммируется. Затем этот образец измеряется рулеткой, вводится в программу его площадь и вычисляется площадь одного пикселя, т.е. площадь делится на число пикселей. Вот и вся калибровка. Далее достаточно подавать любую продукцию, любого размера и формы, определятся число изменившихся пикселей, и умножается на площадь одного пикселя, найденного при калибровке, надеюсь все понятно. Причем продукция может двигаться, например, на конвейере, площадь будет измеряться правильно, нужно только захват
Читать дальше →

Сравнение алгоритмов вычисления чисел Фибоначчи

Время на прочтение3 мин
Количество просмотров9.1K
В комментариях к статьям N-е число Фибоначчи за O(log N) и Еще один алгоритм вычисления чисел Фибоначчи указывалось на тот факт, что уже 100-е число Фибоначчи не помещается в 4 байта, а в «длинной» арифметике скорость выполнения умножения резко просядет. Более того, были предположения, что примитивное сложение может оказаться быстрее. Я решил сравнить 2 алгоритма — простое сложение и алгоритм с логарифмическим количеством операций — и написал тестовую программу на С. Для «длинной» арифметики использовал библиотеку GMP.
Читать дальше →

Еще один алгоритм вычисления чисел Фибоначчи

Время на прочтение1 мин
Количество просмотров15K
Перед прочтением статьи, решил попробовать придумать свой алгоритм c асимптотикой O(log N). Времени понадобилось не очень много. Ниже описание идеи и пример на С++.
Читать дальше →

N-е число Фибоначчи за O(log N)

Время на прочтение4 мин
Количество просмотров80K
Читая статью об устройстве на работу в ABBYY, встретил в ней упоминание задачи:
быстро – за O( log N ) арифметических операций над числами – найти N-е число Фибоначчи
Я задумался над ней и понял, что сходу в голову приходят только решения, работающие за время O(N). Однако позже решение было найдено.
Читать дальше →

Ближайшие события

PyBrain работаем с нейронными сетями на Python

Время на прочтение8 мин
Количество просмотров166K

В рамках одного проекта столкнулся необходимостью работать с нейронными сетями, рассмотрел несколько вариантов, больше всего понравилась PyBrain. Надеюсь её описание будет многим интересно почитать.

PyBrain — одна из лучших Python библиотек для изучения и реализации большого количества разнообразных алгоритмов связанных с нейронными сетями. Являет собой удачный пример совмещения компактного синтаксиса Python с хорошей реализацией большого набора различных алгоритмов из области машинного интеллекта.

Предназначен для:

  • Исследователей — предоставляет единообразную среду для реализации различных алгоритмов, избавляя от потребности в использовании десятков различных библиотек. Позволяет сосредоточится на самом алгоритме а не особенностях его реализации.
  • Студентов — с использованием PyBrain удобно реализовать домашнее задание, курсовой проект или вычисления в дипломной работе. Гибкость архитектуры позволяет удобно реализовывать разнообразные сложные методы, структуры и топологии.
  • Лекторов — обучение методам Machine Learning было одной из основных целей при создании библиотеки. Авторы будут рады, если результаты их труда помогут в подготовке грамотных студентов и специалистов.
  • Разработчиков — проект Open Source, поэтому новым разработчикам всегда рады.

Читать дальше →

Практика использования цифровых фильтров

Время на прочтение3 мин
Количество просмотров29K
Делаю тут проект и возникла вот какая проблема. Получаю данные с АЦП (дельта-сигма) микросхемы в которую встроен контроллер и фильтр, но этот фильтр имеет довольно убогую АЧХ, в итоге идёт завал по ВЧ от 60Гц и далее. Выглядит это примерно так:
image

Т.е. такая неравномерность АЧХ нас явно не устраивает (не проходит по техническим требованиям), правда есть возможность повысить частоту дискретизации с 250Гц до 500Гц, чтобы выровнять АЧХ, однако тогда увеличивается объём данных который ещё нужно будет усреднять, что скажется на производительности (проект на STM32F103VE) системы в целом и на общем потреблении энергии (батарейное питание). Но есть и другой путь.
Читать дальше →

Вычислительная геометрия, или как я стал заниматься олимпиадным программированием. Часть 2

Время на прочтение6 мин
Количество просмотров150K

Вступление


Это вторая часть моей статьи посвящена вычислительной геометрии. Думаю, эта статья будет интереснее предыдущей, поскольку задачки будут чуть сложнее.

Начнем с взаимного расположения точки относительно прямой, луча и отрезка.
Читать дальше →

Генетический алгоритм для генерации лиц

Время на прочтение1 мин
Количество просмотров8.5K
Что будет, если генератор случайных фигур соединить с детектором лиц? Способен ли эволюционный алгоритм путём случайных мутаций сгенерировать человеческое лицо? Разработчик программы Pareidoloop отвечает на этот вопрос утвердительно (генератор протестирован только в Chrome 21).


(с) spiritedflow
Читать дальше →

Олимпиада «Мобильные технологии». Командный тур

Время на прочтение6 мин
Количество просмотров1.5K
Здравствуйте, Хабравчане! Я бы хотел посвятить эту статью интересным и забавным задачам по информатике и математике.

Немного истории


Я являюсь студентом 4 курса математического факультета. Скажу Вам — я очень горжусь, что буду как математиком, так и программистом. Как сказал мне мой декан-программист:«Без математики — это программист с потолком». Так вот, каждый год на протяжении 7 лет мой вуз, а точнее факультет проводит открытую олимпиаду по математике и информатике, за что ему огромное спасибо. Принять в олимпиаде участия могут все: от школьников до студентов (вообще, главное собрать команду хоть из своих соседей).

Читать дальше →

Маленькие секреты больших графов

Время на прочтение2 мин
Количество просмотров9.2K

Если вам интересно, какие знания можно извлечь из большого массива данных, насколько большими бывают графы и какие задачи по анализу социальных графов предлагают Facebook, Twitter и др., то эта статья именно для вас.
Читать дальше →

Парсим русский язык

Время на прочтение8 мин
Количество просмотров71K

В прошлый раз (почти год назад) мы определяли части речи в русском тексте, производили морфологический анализ слов. В этой статье мы пойдем на уровень выше, к синтаксическому анализу целых предложений.

Наша цель заключается в создании парсера русского языка, т.е. программы, которая на вход бы принимала произвольный текст, а на выходе выдавала бы его синтаксическую структуру. Например, так:

"Мама мыла раму":

(предложение
    (именная гр. (сущ мама))
    (глаг. гр. (глаг мыла)
        (именная гр. (сущ раму)))
    (. .)))


Это называется синтаксическим деревом предложения. В графическом виде его можно представить следующим образом (в упрощенном виде):

Читать дальше →

Вклад авторов