Как стать автором
Обновить
19.37

Apache *

Свободный веб-сервер

Сначала показывать
Порог рейтинга
Уровень сложности

Типы совместимости в Schema Registry для Apache Kafka

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров3.8K

В прошлой статье я писал о том, что такое Schema Registry и как используется в Apache Kafka. Сегодня я хочу углубиться в тему и описать поведение системы при различных типах совместимости . Правильное понимание и применение этих типов совместимости поможет обеспечить стабильность и гибкость системы при изменениях структуры данных.

Типы совместимости схем в Apache Kafka

Как Apache Arrow поможет управиться JS с большими данными

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров3.1K

Привет. Меня зовут Николай Шувалов, я занимаюсь коммерческим программированием около семи лет, владею Rust, JavaScript, PHP. Сейчас я работаю в отделе данных билайна. Наша платформа позволяет делиться с партнерами данными, не раскрывая их. Например, можно расширить данные с помощью фильтра Блума. 

Arrow в сравнении со строковыми форматами

Возьмём простую таблицу, которая состоит из трех столбцов: телефона, даты и имени. Рассмотрим, как она будет выглядеть в строковом и столбчатом форматах. Для строкового формата мы возьмем csv и json, для столбчатого формата структура будет одинаковой. Если же таблица состоит, например, из миллиона строк, а нужно получить имя на строке с номером 10 000, то придется бежать по всей строчке. В json то же самое. А в столбчатом формате ситуация иная — значения привязаны к столбцам. Когда мы хотим получить имя на строке 10 000, то сразу обращаемся к этому столбцу и получаем все его данные. 

Существуют RA (random access) файлы, в которых можно пропускать заданное количество строк, но все равно парсеру нужно читать и анализировать пройденные строчки.

Читать далее

Apache Superset 2024. Лучшие практики

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров13K

Привет, Хабр! Меня зовут Антон, я работаю аналитиком в отделе бизнес-аналитики и анализа доходности в ОТП Банке. В нашей новой статье мы погрузимся в мир Apache Superset 2024 и откроем вам лучшие практики и продвинутые методы работы с этим мощным инструментом. После прочтения вы научитесь мастерски кастомизировать Pivot-таблицы, создавать уникальные цветовые палитры для дашбордов, эффективно настраивать систему алертов и использовать удобные CSS/HTML-шпаргалки для ускорения работы. Эти знания помогут значительно повысить эффективность использования Apache Superset, делая вашу аналитическую работу не только производительной, но и визуально привлекательной. Итак, поехали.

Читать далее

Apache Airflow: преимущества и недостатки

Уровень сложностиПростой
Время на прочтение11 мин
Количество просмотров13K

Одним из популярных оркестратором задач является Apache Airflow. Он, как и все инструменты, имеет свои преимущества и недостатки, о которых пойдет речь в данной статье.

Подробнее

Кто ещё здесь не разрабатывал русский BI?

Уровень сложностиПростой
Время на прочтение11 мин
Количество просмотров4.6K

Год назад я планировал выпустить серию статей по мотивам бесед с моими коллегами, но дальше одной статьи не пошло, хотя материала накопилось достаточно. Большинство моих товарищей остались на прошлых местах работ и считаю необходимым в знак уважения перед этими неординарными и талантливыми личностями продолжить свои рассказы охотника до талантов.

Сегодня — это руководитель и senior fullstack Марк Локшин. В этой беседе мы обсуждаем о заходе в тему разработки собственного инструмента Business Intelligence. Тема недвусмысленно намекает на то, что данная тема уже не раз была описана на соответствующих ресурсах, а российский рынок даже после ухода с него западных вендоров обладает собственным набором вполне зрелых и рабочих решений.

Собственно, откуда у нас появилась такая задача? Конечно же от заказчиков. А заказчики у нас чаще специфические: государственные и около организации, администрации субъектов регионов. У этих «ребят» чаще всего основная задача показать большому начальнику на совещании красивый график и отчитаться, как же все классно поработали, у особенных из этих заказчиков предъявлены жесткие требования к инструментам разработки.

Поехали

Apache NiFi как доступный ETL инструмент: кейс применения + тестовый стенд Docker

Уровень сложностиПростой
Время на прочтение8 мин
Количество просмотров7.1K

В статье расскажу о практических аспектах использования Apache NiFi, опишу преимущества и проблемы, с которыми я столкнулся.

Для наглядности собрал "песочницу" в контейнере Docker, в которой представлены упрощенные примеры пайплайнов, аналогичные тем, которые были использованы в реальном проекте.

Читать далее

Как использовать Apache Ignite как in-memory caching layer для ускорения доступа к данным

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров1.8K

Привет, Хабр!

Apache Ignite - это высокопроизводительная, распределённая in-memory платформа, которая предназначена для хранения и обработки больших объёмов данных с ультранизкой задержкой. Основная фича Ignite заключается в его способности обеспечивать молниеносный доступ к данным, распределённым по горизонтально масштабируемому кластеру.

Читать далее

Управление оффсетами в Kafka

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров15K

Сегодня в статье разберем, как Kafka обрабатывает оффсеты сообщений и какие существуют стратегии их сохранения и обновления.

Оффсет в Kafka — это числовой идентификатор, который указывает позицию каждого сообщения внутри партиции топика. Оффсеты представляют собой порядковые номера, начинаемые с нуля, и уникальны в рамках каждой партиции, но не между разными партициями. Т.е сообщение с оффсетом 5 в партиции 1 и сообщение с оффсетом 5 в партиции 2 — это разные сообщения.

Читать далее

Управление схемами в Kafka с использованием Schema Registry

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров9.4K

Apache Kafka является мощным инструментом для обработки и передачи потоковых данных в реальном времени, который находит широкое применение в различных индустриях для обработки огромных объемов данных с низкой задержкой. В центре этой платформы лежит способность эффективно распределять данные между множеством производителей (producers) и потребителей (consumers), при этом поддерживая высокую пропускную способность и масштабируемость. Однако, с увеличением количества и разнообразия данных, возникает необходимость в управлении структурами этих данных, что обеспечивает Schema Registry. Этот компонент является критически важным для поддержания согласованности данных в Kafka, поскольку он управляет схемами сообщений и обеспечивает совместимость между различными версиями схем, что позволяет системам бесперебойно обмениваться данными даже при изменении структуры сообщений.

Читать далее

Как настроить ETL с json’ами в Apache NiFi

Уровень сложностиПростой
Время на прочтение9 мин
Количество просмотров3.3K

Привет, Хабр! Меня зовут Сергей Евсеев, сегодня я расскажу, как в Apache NiFi настраивается ETL-пайплайн на задаче с JSON’ами. В этом мне помогут инструменты Jolt и Avro. Пост пригодится новичкам и тем, кто выбирает инструмент для решения схожей задачи.

Что делает наша команда

Команда работает с данными по рекрутингу — с любой аналитикой, которая необходима персоналу подбора сотрудников. У нас есть различные внешние или внутренние источники, из которых с помощью NiFi или Apache Spark мы забираем данные и складируем к себе в хранилище (по умолчанию Hive, но есть еще PostgreSQL и ClickHouse). Этими же инструментами мы можем брать данные из хранилищ, создавать витрины и складывать обратно, предоставлять данные внутренним клиентам или делать дашборды и давать визуализацию.

Описание задачи

У нас есть внешний сервис, на котором рекрутеры работают с подбором. Сервис может отдавать данные через свою API, а мы эти данные можем загружать и складировать в хранилище. После загрузки у нас появляется возможность отдавать данные другим командам или работать с ними самим. Итак, пришла задача — нужно загрузить через API наши данные. Дали документацию для загрузки, поехали. Идем в NiFi, создаем пайплайн для запросов к API, их трансформации и складывания в Hive. Пайплайн начинает падать, приходится посидеть, почитать документацию. Чего-то не хватает, JSON-ы идут не те, возникают сложности, которые нужно разобрать и решить.

Ответы приходят в формате JSON. Документации достаточно для начала загрузки, но для полного понимания структуры и содержимого ответа — маловато. 

Мы решили просто загружать все подряд — на месте разберемся, что нам нужно и как мы это будем грузить, потом пойдем к источникам с конкретными вопросами. Так как каждый метод API отдает свой класс данных в виде JSON, в котором содержится массив объектов этого класса, нужно построить много таких пайплайнов с обработкой разного типа JSON’ов. Еще одна сложность — объекты внутри одного и того же класса могут отличаться по набору полей и их содержимому. Это зависит от того, как, например, сотрудники подбора заполнят информацию о вакансии на этом сервисе. Этот API работает без версий, поэтому в случае добавления новых полей информацию о них мы получим только либо из данных, либо в процессе коммуникации.

Читать далее

Временное хранилище данных на Apache Druid: почему это эффективно сработало для загрузки табличных файлов

Уровень сложностиПростой
Время на прочтение7 мин
Количество просмотров3.5K

Всем привет! Меня зовут Амир, я Data Engineer в компании «ДЮК Технологии». Расскажу, как мы спроектировали и реализовали на Apache Druid хранилище разрозненных табличных данных.

В статье опишу, почему для реализации проекта мы выбрали именно Apache Druid, с какими особенностями реализации столкнулись, как сравнивали методы реализации датасорсов.

Читать далее

Как настроить Source коннекторы Kafka Connect для оптимизации пропускной способности

Уровень сложностиСредний
Время на прочтение14 мин
Количество просмотров4.1K

Привет, Хабр! Доводилось ли вам тратить долгие бесплодные часы в попытке настроить коннекторы Kafka Connect, чтобы добиться адекватного потока данных? Мне, к сожалению, доводилось. Представляю вашему вниманию перевод статьи "How to Tune Kafka Connect Source Connectors to Optimize Throughput" автора Catalin Pop. Это прекрасное руководство от Confluent, где подробно и с примером описывается, как настроить Source коннекторы.

Читать далее

Spark. План запросов на примерах

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров7.6K

Всем привет!

В этой статье возьмем за основу пару таблиц и пройдемся по планам запросов по нарастающей: от обычного селекта до джойнов, оконок и репартиционирования. Посмотрим, чем отличаются виды планов друг от друга, что в них изменяется от запроса к запросу и разберем каждую строчку на примере партиционированной и непартиционированной таблицы.

Читать далее

Ближайшие события

Как перезапускать PySpark-приложение и зачем это может понадобиться

Уровень сложностиСложный
Время на прочтение15 мин
Количество просмотров4.1K

Сегодня все крупные компании сохраняют и обрабатывают большие объёмы информации, причём стремятся делать это максимально эффективным для бизнеса способом. Меня зовут Мазаев Роман и я работаю в проекте загрузки данных на платформу SberData. Мы используем PySpark, который позволяет очень быстро распределённо обрабатывать данные в оперативной памяти узлов нашего кластера на базе Hadoop. Я поделюсь способом, с помощью которого можно снизить потребление ресурсов кластера за счёт перезапуска PySpark-приложений между выполняемыми Spark-задачами, и расскажу, как это делать правильно.

Читать далее

Мониторинг Apache Airflow. Оценка «прожорливости» тасок

Время на прочтение10 мин
Количество просмотров6.1K

Всем привет! Случались ли у вас ситуации, когда количество DAG’ов в вашем Airflow переваливает за 800 и увеличивается на 10-20 DAG’ов в неделю? Согласен, звучит страшно, чувствуешь себя тем героем из Subway Surfers… А теперь представьте, что эта платформа является единой точкой входа для всех аналитиков из различных команд и DAG’и пишут более 50 различных специалистов. Подкосились ноги, холодный пот и желание уйти из IT?

Не спешите паниковать, под катом я расскажу о том, как контролировать потребление ресурсов DAG’ов Airflow для предупреждения неоптимально написанных DAG’ов и борьбы с ними.

Меня зовут Давид Хоперия, я Data Engineer в департаменте данных Ozon.Fintech и моим основным инструментом является Apache Airflow, поэтому настало время углубиться в детали его работы.

Поехали

Основные функции Apache Tomcat

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров19K

Привет, дорогие читатели!

Apache Tomcat — это открытое программное обеспечение, реализующее спецификации Java Servlet, JSP и Java WebSocket, предоставляя таким образом платформу для запуска веб-приложений, написанных на языке Java. Разработанный и поддерживаемый Apache Software Foundation, Tomcat служит контейнером сервлетов, который позволяет веб-приложениям использовать Java для создания динамичных веб-страниц.

Tomcat может работать как самостоятельный веб-сервер, где он обрабатывает как статические страницы, так и динамические запросы через Servlets и JSP. Однако часто Tomcat используется в сочетании с традиционными веб-серверами, такими как Apache HTTP Server или Nginx, для обработки статического контента, в то время как динамический контент обрабатывается через Tomcat.

В этой статье мы рассмотрим основной функционал Tomcat.

Читать далее

Apache NiFi. Как быстро подружиться с LDAP и Registry

Уровень сложностиПростой
Время на прочтение17 мин
Количество просмотров6.3K

Казалось бы, про Apache NiFi уже писали не раз. Но если ты только знакомишься с инструментом, разобраться в таких статьях бывает нелегко. Обычно с тобой говорят так, будто ты уже давно в теме, да и задачи чаще решают явно не твои. С официальной документацией тоже все сложно: она есть, но для быстрого погружения явно не подходит.

Вот почему я решил подготовить свой гайд для новичка. Попробуем максимально быстро разобраться с первичной настройкой NiFi и NiFi Registry, подключить авторизацию по LDAP, протестировать работоспособность, рассмотреть возможные ошибки настройки и отдебажить их. 

Читать далее

REST API сервер на Bash с использованием сокетов и Apache

Уровень сложностиСредний
Время на прочтение14 мин
Количество просмотров9.1K

Всем привет! Ранее рассказывал о том, как создать REST API и Web-сервер на PowerShell для Windows, а также упоминал, что подобный сервер будет работать и в системе Linux, благодаря кроссплатформенной версии PowerShell Core. Безусловно, для подобных целей лучше используются специализированные серверные фреймворки или библиотеки, такие как Flask или Django в Python, но меня не покидала идея реализации похожего сервера, где описание логики будет производиться на языке одного только Bash. Приведу примеры, с помощью которых можно создать такой сервер используя сетевые сокеты netcat , socat и ncat, а также веб-сервера Apache с использованием встроенных модулей.

Читать далее

Алертинг состояния выполения DAG`ов Apache Airflow в Telegram за 1 минуту

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров6.4K

Коллеги, здарова! Часто бывает что нужно отправить сообщение в мессенджер к разработчикам, в случае возникновения различных проблем.

Представляю небольшое решение, которое позволит отправить сообщение в Telegram с информацией о состоянии DAG`а Apache Airflow

Читать далее

С нуля до плагина JMeter: пишем свой продукт без опыта

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров5K

От проблемы к практике: как привязать JMeter к Allure Report если нет опыта программирования, но очень хочется

Читать далее