
Изучил Python за короткий срок. Личная история. Взяли без знаний, но я смог до всяческих дедлайнов, пройдя огромное количество стресса, изучить язык программирования и даже этим спасти проект.
Большие данные и всё о них
Изучил Python за короткий срок. Личная история. Взяли без знаний, но я смог до всяческих дедлайнов, пройдя огромное количество стресса, изучить язык программирования и даже этим спасти проект.
Если бы у Кевина Митника была Алиса PRO, то ему бы не пришлось рыться в мусорных баках ради доступа к персональным данным. Протестировав Yandex GPT я узнал, что голосовой ассистент от Яндекс не только раздаёт всем мой номер телефона по первому требованию, но и знает список несовершеннолетних в моей семье, несмотря на «закрытый» профиль ВКонтакте где он был опубликован. А также где‑то хранит всю эту информацию без моего разрешения, но при допросе — уходит в несознанку...
Салют, Хабр! Время летит незаметно. Будто совсем недавно мы знакомили вас с GigaChat MAX, но мы не стоим на месте и сегодня готовы представить вам обещанный апгрейд. За полгода мы значительно улучшили обучающие данные, поработали над инфраструктурой обучения моделей, а также уделили особое внимание всему процессу Alignment-а, в том числе RLHF.
Представляем вам GigaChat 2 — полностью обновлённую линейку моделей в версиях Lite, Pro и Max. Все модели серьёзно улучшены: мы обновили pretrain’ы, улучшили большинство метрик по сравнению с предыдущими версиями, добавили поддержку контекста в 128 тысяч токенов, улучшили вызовы функций, и в целом повысили понимание инструкций.
GigaChat 2 — не просто сухие числа и технические улучшения. Теперь это надёжный помощник в повседневных задачах. Например, он легко оформит отчёт для работы, напишет чистый и эффективный код, поздравит с днём рождения или даст мудрый совет. Мы уверены: с ним вы сможете делать больше, быстрее и лучше как на работе, так и в жизни. Попробуйте GigaChat 2 уже сейчас в Playground — пользовательском интерфейсе для продвинутой работы с промптами!
В 2025 году школьники не летают на Марс, автомобили всё так же колесят по земле, а искусственный интеллект, к счастью, не стремится поработить человечество. Но он уже меняет мир вокруг нас, проникая в самые разные сферы жизни. Каким будет наше будущее? Какие технологии определят его облик? В новом сезоне — «Будущее здесь» — предлагаем вместе с нами поразмышлять над этими вопросами.
Думать широко, глубоко и даже дерзко — в духе Хабра, и тема сезона этому способствует. Ведь каждое смелое предсказание — это шаг в неизведанное. А самый смелый шаг заслуживает не только признания, но и крутого приза.
Привет, Хабр! Меня зовут Наталья Горлова, я архитектор данных. Несколько лет назад мы в CDEK поняли, что продукты, на которых работало хранилище, перестали нас устраивать: не устраивала гибкость разработки и скорость поставки данных. C тех пор произошло множество изменений, которыми хочется поделиться с сообществом.
Расскажу, как платформа данных развивалась, и к чему мы пришли на конец 2024 года. Эта статья — ретроспектива моей почти шестилетней работы и текущих реалий нашей платформы данных.
Оптимизация SQL-запросов является одной из ключевых задач при работе с реляционными базами данных. Эффективные SQL-запросы позволяют значительно улучшить производительность приложений и обеспечить более быстрый доступ к данным. В данной статье мы рассмотрим как переписать запрос, чтобы выполнялся быстрее. В статье пойдет речь о PostgreSQL, хотя применять данные советы к любой базе данных SQL Ниже будут представлены термины и операторы, о которых пойдет в данной статье.
В разведке, где информация является ключевым фактором успеха, важнейшей задачей всегда была оценка потенциала и возможностей противника. Традиционные методы, основанные на сборе информации от шпионов, анализе открытых источников и допросах пленных, зачастую оказывались неэффективными, предоставляя неполные, неточные и противоречивые данные.Во время Второй мировой войны перед Союзниками встала острая необходимость определить реальные масштабы производства военной техники в нацистской Германии.
Решением этой проблемы стал нетрадиционный подход, основанный на применении статистического анализа к, казалось бы, незначительным деталям — маркировке на захваченном немецком оборудовании. Этот метод, известный как «Германская танковая проблема», позволил получить удивительно точные оценки производства немецких танков, превосходящие по точности данные, полученные традиционной разведкой. История германской танковой проблемы демонстрирует, как статистические методы способны превратить, казалось бы, хаотичную информацию в ценные разведывательные данные, играя решающую роль в стратегическом планировании и ведении боевых действий. Однако, статистическим анализом производства танков всё не ограничивалось.
Салют, Хабр! Прошедший сезон оказался богат на релизы: ровно год назад мы делились новостями о GigaChat Pro, затем весной рассказали об увеличении контекста и улучшении возможностей модели, а совсем недавно завершили обучение GigaChat Vision: мы научили GigaChat понимать картинки и уже пишем про это статью.
Наши модели непрерывно развиваются, обретая всё больше новых функций, и сегодня повод рассказать о них. Встречайте наш новый GigaChat MAX!
На днях ученые из MIT показали альтернативу многослойному перцептрону (MLP). MLP с самого момента изобретения глубокого обучения лежит в основе всех нейросетей, какими мы их знаем сегодня. На его идее в том числе построены большие языковые модели и системы компьютерного зрения.
Однако теперь все может измениться. В KAN (Kolmogorov-Arnold Networks) исследователи реализовали перемещение функций активации с нейронов на ребра нейросети, и такой подход показал блестящие результаты.
Привет, Хабр! Меня зовут Иван Антипов, я занимаюсь ML в команде матчинга Ozon. Наша команда разрабатывает алгоритмы поиска одинаковых товаров на сайте. Это позволяет покупателям находить более выгодные предложения, экономя время и деньги.
В этой статье мы обсудим кластеризацию на графах, задачу выделения сообществ, распад карате-клуба, self-supervised и unsupervised задачи — и как всё это связано с матчингом.
Государство активно взяло курс на формирование реестра граждан и наполнение его разнородными данными. Про это высказываются самые разные чиновники после главного шага - введения системы "электронных повесток". К этому готовились. Напомню, что именно было сделано в последние два года для сбора максимального объема данных внутри госсистем.
Привет! Меня зовут Максим Бабенко, я руковожу отделом технологий распределённых вычислений в Яндексе. Сегодня мы выложили в опенсорс платформу YTsaurus — одну из основных инфраструктурных BigData-систем, разработанных в Яндексе.
YTsaurus — результат почти десятилетнего труда, которым нам хочется поделиться с миром. В этой статье мы расскажем историю возникновения YT, ответим на вопрос, зачем нужен YTsaurus, опишем ключевые возможности системы и обозначим область её применения.
В Github-репозитории находится серверный код YTsaurus, инфраструктура развёртывания с использованием k8s, а также веб-интерфейс системы и клиентский SDK для распространённых языков программирования — C++, Java, Go и Python. Всё это — под лицензией Apache 2.0, что позволяет всем желающим загрузить его на свои серверы, а также дорабатывать его под свои нужды.
Уже более десяти лет тот факт, что люди с трудом извлекают из своих данных полезную информацию, сбрасывают на чересчур большой размер этих данных. «Объем собираемой информации слишком велик для ваших хилых систем», — такой нам ставили диагноз. А лекарство, соответственно, заключалось в том, чтобы купить какую‑нибудь новую причудливую технологию, которая сможет работать в больших масштабах. Конечно, после того, как целевая группа по Big Data покупала новые инструменты и мигрировала с устаревших систем, компании снова обнаруживали, что у них по‑прежнему возникают проблемы с пониманием своих данных.
В результате постепенно некоторые начинали понимать, что размер данных вообще не был проблемой.
Мир в 2023 году выглядит иначе, чем когда зазвенели первые тревожные звоночки по поводу Big Data. Катаклизм обработки информации, который все предсказывали, не состоялся. Объемы данных, возможно, немного возросли, но возможности аппаратного обеспечения росли еще быстрее. Поставщики услуг все еще продвигают свои возможности масштабирования, но люди, которые сталкиваются с ними на практике, начинают задаваться вопросом, как они вообще связаны с их реальными проблемами.
А дальше будет и того интереснее.
Этот проект родился после беседы с друзьями об инвестициях в недвижимость. Обсуждали, как выгодно купить квартиру, паркинг или келлер под сдачу и выгодно ли вообще.
Я решил проанализировать рынок продажи и аренды гаражей и парковочных мест своего города. Квартиры – слишком дорогие объекты для инвестиций, а что касается гаражей и паркингов – тут «вход» гораздо меньше, и на аренду вроде бы всегда есть спрос.
Дисклеймер: изначально я планировал оформить статью логотипами упоминаемых в ней компаний и программ, но на TDS запрещено обширное использование логотипов, поэтому я решил украсить содержание случайными изображениями и справочной информацией. Весело вспоминать, где мы в те времена находились и чем занимались.