Как стать автором
Поиск
Написать публикацию
Обновить
80.18

Big Data *

Большие данные и всё о них

Сначала показывать
Порог рейтинга
Уровень сложности

Изучение Python за 2 недели через боль и дедлайн: личная история

Уровень сложностиПростой
Время на прочтение9 мин
Количество просмотров22K

Изучил Python за короткий срок. Личная история. Взяли без знаний, но я смог до всяческих дедлайнов, пройдя огромное количество стресса, изучить язык программирования и даже этим спасти проект.

Читать далее

Новости

Конфиденциальность мертва: Яндекс и ВК обучают ИИ на ваших личных данных?

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров24K

Если бы у Кевина Митника была Алиса PRO, то ему бы не пришлось рыться в мусорных баках ради доступа к персональным данным. Протестировав Yandex GPT я узнал, что голосовой ассистент от Яндекс не только раздаёт всем мой номер телефона по первому требованию, но и знает список несовершеннолетних в моей семье, несмотря на «закрытый» профиль ВКонтакте где он был опубликован. А также где‑то хранит всю эту информацию без моего разрешения, но при допросе — уходит в несознанку...

Нырнуть в мусорку от Яндекса...

GigaChat 2.0 в API

Уровень сложностиСредний
Время на прочтение14 мин
Количество просмотров20K

Салют, Хабр! Время летит незаметно. Будто совсем недавно мы знакомили вас с GigaChat MAX, но мы не стоим на месте и сегодня готовы представить вам обещанный апгрейд. За полгода мы значительно улучшили обучающие данные, поработали над инфраструктурой обучения моделей, а также уделили особое внимание всему процессу Alignment-а, в том числе RLHF. 

Представляем вам GigaChat 2 — полностью обновлённую линейку моделей в версиях Lite, Pro и Max. Все модели серьёзно улучшены: мы обновили pretrain’ы, улучшили большинство метрик по сравнению с предыдущими версиями, добавили поддержку контекста в 128 тысяч токенов, улучшили вызовы функций, и в целом повысили понимание инструкций. 

GigaChat 2 — не просто сухие числа и технические улучшения. Теперь это надёжный помощник в повседневных задачах. Например, он легко оформит отчёт для работы, напишет чистый и эффективный код, поздравит с днём рождения или даст мудрый совет. Мы уверены: с ним вы сможете делать больше, быстрее и лучше как на работе, так и в жизни. Попробуйте GigaChat 2 уже сейчас в Playground — пользовательском интерфейсе для продвинутой работы с промптами!

GigaChat 2

Бегущий по лезвию ИИ — 2025: сезон футурологии на Хабре

Время на прочтение4 мин
Количество просмотров47K

В 2025 году школьники не летают на Марс, автомобили всё так же колесят по земле, а искусственный интеллект, к счастью, не стремится поработить человечество. Но он уже меняет мир вокруг нас, проникая в самые разные сферы жизни. Каким будет наше будущее? Какие технологии определят его облик? В новом сезоне — «Будущее здесь» — предлагаем вместе с нами поразмышлять над этими вопросами.

Думать широко, глубоко и даже дерзко — в духе Хабра, и тема сезона этому способствует. Ведь каждое смелое предсказание — это шаг в неизведанное. А самый смелый шаг заслуживает не только признания, но и крутого приза.

Узнать об условиях и призах

Трансформация платформы данных: от пары кубов до хранилища > 30 Тб и 1000 ETL-процессов

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров5.7K

Привет, Хабр! Меня зовут Наталья Горлова, я архитектор данных. Несколько лет назад мы в CDEK поняли, что продукты, на которых работало хранилище, перестали нас устраивать: не устраивала гибкость разработки и скорость поставки данных. C тех пор произошло множество изменений, которыми хочется поделиться с сообществом.

Расскажу, как платформа данных развивалась, и к чему мы пришли на конец 2024 года. Эта статья — ретроспектива моей почти шестилетней работы и текущих реалий нашей платформы данных.

Читать далее

Нейросети vs Stack Overflow: что происходит?

Время на прочтение4 мин
Количество просмотров18K

Источник изображения: ai.plainenglish.io

Stack Overflow, о котором, вероятно, знают на Хабре все, сейчас проигрывает неожиданному конкуренту — нейросетям. Пессимисты даже считают, что может завершиться без малого 20-летняя история проекта. Проблема в том, что все больше разработчиков предпочитают задавать свои вопросы не людям, а искусственному интеллекту. Так быстрее и во многих случаях эффективнее. Давайте разберемся, что там происходит.
Читать дальше →

Оптимизация SQL запросов

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров37K

Оптимизация SQL-запросов является одной из ключевых задач при работе с реляционными базами данных. Эффективные SQL-запросы позволяют значительно улучшить производительность приложений и обеспечить более быстрый доступ к данным. В данной статье мы рассмотрим как переписать запрос, чтобы выполнялся быстрее. В статье пойдет речь о PostgreSQL, хотя применять данные советы к любой базе данных SQL Ниже будут представлены термины и операторы, о которых пойдет в данной статье.

Читать про оптимизацию

Германская танковая проблема: торжество статистики и один из первых примеров военного OSINT'a

Уровень сложностиПростой
Время на прочтение14 мин
Количество просмотров31K

В разведке, где информация является ключевым фактором успеха, важнейшей задачей всегда была оценка потенциала и возможностей противника. Традиционные методы, основанные на сборе информации от шпионов, анализе открытых источников и допросах пленных, зачастую оказывались неэффективными, предоставляя неполные, неточные и противоречивые данные.Во время Второй мировой войны перед Союзниками встала острая необходимость определить реальные масштабы производства военной техники в нацистской Германии.

Решением этой проблемы стал нетрадиционный подход, основанный на применении статистического анализа к, казалось бы, незначительным деталям — маркировке на захваченном немецком оборудовании. Этот метод, известный как «Германская танковая проблема», позволил получить удивительно точные оценки производства немецких танков, превосходящие по точности данные, полученные традиционной разведкой. История германской танковой проблемы демонстрирует, как статистические методы способны превратить, казалось бы, хаотичную информацию в ценные разведывательные данные, играя решающую роль в стратегическом планировании и ведении боевых действий. Однако, статистическим анализом производства танков всё не ограничивалось.

Читать далее

Элегантная математика фильтров Блума

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров15K

Вероятностные функции способны моделировать множество алгоритмов и процедур. Они помогают нам оптимизировать процессы для получения наилучших результатов. Опытные программные инженеры знают, что рано или поздно практически любое ПО достигает определённой степени недетерминированности, когда решение является не абсолютным, но при оптимальной конфигурации приближается к наилучшим результатам. В математическом смысле подобное решение обычно сводится к поиску минимума, максимума или пределов неких вероятностных функций.

В этой статье речь пойдёт об изяществе математики, лежащей в основе фильтров Блума. Мы разберём аспекты точности работы и компромиссов при конфигурировании этих фильтров, а также узнаем, почему в некоторых случаях они могут стать отличным выбором, особенно в сфере больших данных и системах OLAP, когда подразумевается обработка огромных и статичных датасетов.
Читать дальше →

GigaChat MAX — новая, сильная модель GigaChat

Уровень сложностиСредний
Время на прочтение22 мин
Количество просмотров39K

Салют, Хабр! Прошедший сезон оказался богат на релизы: ровно год назад мы делились новостями о GigaChat Pro, затем весной рассказали об увеличении контекста и улучшении возможностей модели, а совсем недавно завершили обучение GigaChat Vision: мы научили GigaChat понимать картинки и уже пишем про это статью.

Наши модели непрерывно развиваются, обретая всё больше новых функций, и сегодня повод рассказать о них. Встречайте наш новый GigaChat MAX!

GigaChat MAX

Excel — самый опасный софт на планете

Уровень сложностиПростой
Время на прочтение7 мин
Количество просмотров102K


В 80-е годы компании покупали компьютеры, чтобы запустить электронные таблицы. Автоматический расчёт налогов и зарплат казался чудом. Тысячи бухгалтеров оказались на улице, остальным пришлось осваивать работу ПК, а конкретно — Excel.

И до сих пор Excel играет важнейшую роль в бизнесе многих компаний. Без электронных таблиц у них просто всё развалится. Сложно найти на компьютере другую программу настолько древнюю и настолько важную, от которой столько всего зависит. И в такой ситуации факапы неизбежны.
Читать дальше →

Зачем компаниям ML? Разбираемся на примере Netflix

Уровень сложностиПростой
Время на прочтение10 мин
Количество просмотров7.7K

Привет, Хабр! Я Ефим, MLOps-инженер в отделе Data- и ML-продуктов Selectel. В последнее время, куда ни глянешь, только и разговоров, что про ML. Но всегда хочется увидеть результаты работы на практике. Если с IT-гигантами все понятно, то зачем ML, скажем, компаниям из индустрии развлечений? В статье попробуем разобраться с этим (насколько позволят открытые источники) на примере Netflix.
Читать дальше →

На практике пробуем KAN – принципиально новую архитектуру нейросетей

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров41K

На днях ученые из MIT показали альтернативу многослойному перцептрону (MLP). MLP с самого момента изобретения глубокого обучения лежит в основе всех нейросетей, какими мы их знаем сегодня. На его идее в том числе построены большие языковые модели и системы компьютерного зрения.

Однако теперь все может измениться. В KAN (Kolmogorov-Arnold Networks) исследователи реализовали перемещение функций активации с нейронов на ребра нейросети, и такой подход показал блестящие результаты.

Читать далее

Ближайшие события

Два сапога — пара, а три — уже community: как алгоритмы на графах помогают собирать группы товаров

Время на прочтение14 мин
Количество просмотров27K

Привет, Хабр! Меня зовут Иван Антипов, я занимаюсь ML в команде матчинга Ozon. Наша команда разрабатывает алгоритмы поиска одинаковых товаров на сайте. Это позволяет покупателям находить более выгодные предложения, экономя время и деньги.

В этой статье мы обсудим кластеризацию на графах, задачу выделения сообществ, распад карате-клуба, self-supervised и unsupervised задачи — и как всё это связано с матчингом.

Читать далее

Данные: какие про вас собирают, а какие от вас закрывают?

Время на прочтение3 мин
Количество просмотров21K

Государство активно взяло курс на формирование реестра граждан и наполнение его разнородными данными. Про это высказываются самые разные чиновники после главного шага - введения системы "электронных повесток". К этому готовились. Напомню, что именно было сделано в последние два года для сбора максимального объема данных внутри госсистем.

Читать далее

Проверяем ветхозаветную историю происхождения человечества от Адама и Евы с помощью популяционной модели

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров15K

Помню, как несколько лет назад сидел на последнем ряду аудитории и слушал лекцию по теории эволюции. Тогда мне это было особенно интересно: каждый вечер я штудировал доклады Дробышевского, Соколова, Панчина, Гельфанда и других причастных к Антропогенезу. И в один день преподаватель сердито посмотрела в окно и спросила меня, как долго должны ходить по газону люди, чтобы образовалась тропа.

На этот странный вопрос я ответить не смог, но он меня неожиданно натолкнул на идею для любопытного эксперимента. Зачем изучать тропообразовательный потенциал людей, когда можно построить симуляцию и проверить теологическую теорию о самом происхождении человечества. Мне стало интересно, может ли человечество развиться до 11 млрд со времен Адама и Евы к концу XXI века. О том, что из этого получилось, рассказываю под катом.
Читать дальше →

YTsaurus: основная система для хранения и обработки данных Яндекса теперь open source

Время на прочтение14 мин
Количество просмотров67K

Привет! Меня зовут Максим Бабенко, я руковожу отделом технологий распределённых вычислений в Яндексе. Сегодня мы выложили в опенсорс платформу YTsaurus — одну из основных инфраструктурных BigData-систем, разработанных в Яндексе.

YTsaurus — результат почти десятилетнего труда, которым нам хочется поделиться с миром. В этой статье мы расскажем историю возникновения YT,  ответим на вопрос, зачем нужен YTsaurus, опишем ключевые возможности системы и обозначим область её применения.

В Github-репозитории находится серверный код YTsaurus, инфраструктура развёртывания с использованием k8s, а также веб-интерфейс системы и клиентский SDK для распространённых языков программирования — C++, Java, Go и Python. Всё это — под лицензией Apache 2.0, что позволяет всем желающим загрузить его на свои серверы, а также дорабатывать его под свои нужды.

Читать далее

Большие данные мертвы. Это нужно принять

Уровень сложностиСредний
Время на прочтение17 мин
Количество просмотров75K

Уже более десяти лет тот факт, что люди с трудом извлекают из своих данных полезную информацию, сбрасывают на чересчур большой размер этих данных. «Объем собираемой информации слишком велик для ваших хилых систем», — такой нам ставили диагноз. А лекарство, соответственно, заключалось в том, чтобы купить какую‑нибудь новую причудливую технологию, которая сможет работать в больших масштабах. Конечно, после того, как целевая группа по Big Data покупала новые инструменты и мигрировала с устаревших систем, компании снова обнаруживали, что у них по‑прежнему возникают проблемы с пониманием своих данных.

В результате постепенно некоторые начинали понимать, что размер данных вообще не был проблемой.

Мир в 2023 году выглядит иначе, чем когда зазвенели первые тревожные звоночки по поводу Big Data. Катаклизм обработки информации, который все предсказывали, не состоялся. Объемы данных, возможно, немного возросли, но возможности аппаратного обеспечения росли еще быстрее. Поставщики услуг все еще продвигают свои возможности масштабирования, но люди, которые сталкиваются с ними на практике, начинают задаваться вопросом, как они вообще связаны с их реальными проблемами.

А дальше будет и того интереснее.

Читать далее

Покупка гаража как инвестиция

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров28K

Этот проект родился после беседы с друзьями об инвестициях в недвижимость. Обсуждали, как выгодно купить квартиру, паркинг или келлер под сдачу и выгодно ли вообще.

Я решил проанализировать рынок продажи и аренды гаражей и парковочных мест своего города. Квартиры – слишком дорогие объекты для инвестиций, а что касается гаражей и паркингов – тут «вход» гораздо меньше, и на аренду вроде бы всегда есть спрос.

Читать далее

2003–2023: Краткая история Big Data

Время на прочтение17 мин
Количество просмотров18K
Когда, играя в ту или иную RPG, я оказываюсь в библиотеке, то обязательно перечитываю все книги на полках, чтобы лучше вникнуть во вселенную игры. Помнит кто-нибудь «Краткую историю империи» в Morrowind?

Большие данные (Big Data) и, в частности, экосистема Hadoop появились немногим более 15 лет назад и развились к сегодняшнему дню так, как мало кто мог тогда предположить.

Ещё только появившись, опенсорсный Hadoop сразу стал популярным инструментом для хранения и управления петабайтами данных. Вокруг него сформировалась обширная и яркая экосистема с сотнями проектов, и он до сих пор используется многими крупными компаниями, даже на фоне современных облачных платформ. В текущей статье я опишу все эти 15 лет1 эволюции экосистемы Hadoop, расскажу о её росте в течение последнего десятилетия, а также о последних шагах в развитии сферы больших данных за последние годы.

Так что пристегнитесь и настройтесь на путешествие во времени вглубь 20 последних лет, поскольку наша история начинается в 2003 году в маленьком городке к югу от Сан-Франциско…

Дисклеймер: изначально я планировал оформить статью логотипами упоминаемых в ней компаний и программ, но на TDS запрещено обширное использование логотипов, поэтому я решил украсить содержание случайными изображениями и справочной информацией. Весело вспоминать, где мы в те времена находились и чем занимались.

Читать дальше →
1
23 ...

Вклад авторов