Обновить
666.65

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Какой табличный формат LLM понимают лучше всего? (Результаты по 11 форматам)

Время на прочтение8 мин
Охват и читатели7.9K

Команда AI for Devs подготовила перевод статьи о том, в каком формате лучше всего передавать таблицы LLM. Исследование охватило 11 популярных форматов — от CSV и JSON до YAML и Markdown. Результаты неожиданны: разница в точности достигает 16 процентных пунктов, а выбор формата напрямую влияет на стоимость инференса и стабильность RAG-пайплайнов.

Читать далее

Зачем бизнесу GPT-платформа, а не просто LLM: опыт JET & Yandex GPT Lab

Уровень сложностиСредний
Время на прочтение6 мин
Охват и читатели4.6K

Меня зовут Антон Чикин, я руковожу отделом интеллектуального анализа в «Инфосистемы Джет». В статье я попробую показать на практическом примере, почему корпоративный ИИ нельзя свести к установке готовой LLM — и что именно приходится выстраивать вокруг неё, чтобы получить реальную ценность для бизнеса.

Этот материал будет полезен тем, кто отвечает за внедрение ИИ в компаниях среднего и крупного масштаба: ИТ-директорам, архитекторам корпоративных систем, специалистам по информационной безопасности и тем, кто рассматривает генеративный ИИ как инструмент автоматизации бизнес-процессов.

Читать далее

Искусственное мышление: дать ИИ понимание и эстетику

Уровень сложностиПростой
Время на прочтение17 мин
Охват и читатели3.7K

Сильный искусственный интеллект (AGI, искусственное мышление) - это Священный Грааль современной компьютерной науки. Его поиском занимается множество людей и на него направляются миллиарды денег.

Бурное развитие нейросетей в последние годы, кажется, сформировало представление, что путь от слабого ИИ к сильному будет эволюционным - то есть, за счёт только лишь развития нейросетей мы получим систему, которая будет понимать смысл и чувствовать красоту.

Однако, этот тезис не доказан ни теоретически, ни практически. А что, если он и вовсе ошибочен? Чтобы увереннее размышлять об этом, давайте зададим простые, базовые вопросы: что такое понимание и зачем оно нужно? Что такое эстетика и зачем она нужна?

Мы не сможем избежать этих вопросов на пути к искусственному мышлению, а значит попробуем дать предельно содержательные ответы на эти вопросы. Сделав это максимально честно и старательно, посмотрим, не смогут ли ответы нам чем-то помочь, сделать перспективы сильного ИИ сколько-нибудь яснее?

Данная статья - это в первую очередь приглашение вместе подумать.

Читать далее

Как протестировать машинный переводчик

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели3.9K

Машинный перевод уже стал привычной частью жизни — от деловой переписки до общения с людьми из других стран. Но за простотой нажатия кнопки «перевести» стоит сложная технология, которая требует постоянного контроля качества.

В компании Lingvanex мы применяем собственный подход к выбору тестовых данных, ориентируясь на максимальную репрезентативность и адаптацию к реальным запросам клиентов. Цель состоит в том, чтобы создавать модели, которые могут точно переводить тексты как с лексической, так и с грамматической точностью, сохраняя контекст и стиль.

В этой статье мы подробнее рассмотрим, как наша команда выбирает тестовые наборы данных и обсудим ограничения существующих стандартов.

Читать далее

Часть-1. Почему ИИ рисует каракули вместо текста: анатомия проблемы и дорожная карта решений

Уровень сложностиСредний
Время на прочтение29 мин
Охват и читатели6.8K

Привет, чемпионы! Давайте начистоту. Вы уже перепробовали все: и промпты в кавычках, и уговоры на английском, и даже шептали запросы своему GPU. Результат? Очередная вывеска с текстом, напоминающим древние руны, переведенные через пять языков. Знакомо? Это наша общая, фундаментальная боль, и сегодня мы не будем ее заливать кофеином и надеждой. Мы возьмем ее, положим на операционный стол и проведем полную анатомическую диссекцию.

Читать далее

Инженирия контекста для саморазвивающихся ИИ-агентов

Время на прочтение4 мин
Охват и читатели5.4K

Обычно качество ИИ улучшают двумя путями — дообучая веса или сокращая промты, чтобы всё работало быстрее и дешевле. Со временем короткие шаблоны теряют смысл, а длинные инструкции превращаются в кашу из выжимок.

Оказывается, сила ИИ-приложений кроется не в размере модели, а в том, как “живёт” и развивается их контекст. В роли суперспособности выступает динамичный плейбук — он не боится становиться длиннее, обновляется маленькими шажками и сохраняет тонкие доменные знания. Модель сама учится отбирать, что ей важно, а не просто сжимать всё в краткие подсказки.

В этом разборе — как инженерия контекста помогает ИИ думать гибче и как этот подход работает на практике.

Читать далее

Как Senior управляют контекстным окном LLM

Время на прочтение5 мин
Охват и читатели9K

Большие языковые модели (LLM) уже умеют писать код, анализировать данные и даже проектировать архитектуру. Но большинство пользователей по-прежнему работают с ними неправильно — перегружают контекст, теряют важную информацию и удивляются «галлюцинациям» модели.

В статье — практический разбор того, как устроено контекстное окно и почему именно контекстная инженерия становится новым навыком разработчиков. Разберём типичные ошибки, правила оптимизации, принципы управления памятью LLM и реальные стратегии, которые используют команды, работающие с Claude, ChatGPT и GitHub Copilot.

После прочтения вы поймёте, как добиться стабильных и точных ответов от модели, тратить меньше токенов и управлять контекстом так, как это делают инженеры ведущих AI-компаний.

Читать далее

Топ вопросов с Data Science собеседований: Деревья и ансамбли, кластеризация, метрические модели

Уровень сложностиПростой
Время на прочтение15 мин
Охват и читатели10K

Знание классики - база любых собеседований на все грейды в DS!

Этот материал не рассчитан на изучение тем с нуля. Это чеклист и тренажёр, по которому стоит пройтись перед техническим интервью по классическому ML. Кратко, по делу, с акцентом на то, что действительно спрашивают.

В этой части разберем:

Деревья и ансамбли, метрические модели, кластеризацию

кластеризацию

Узнать вопросы и ответы на них

ИИ-консерва: как мы «взламывали» LLM-модели, чтобы извлечь датасеты и рассуждения

Уровень сложностиПростой
Время на прочтение12 мин
Охват и читатели11K

Представьте, что каждая обученная языковая модель — это жёсткий диск, на котором записаны все данные её обучения, но в сжатом и зашифрованном виде. Традиционное взаимодействие с моделью — это как чтение отдельных файлов через не всегда предсказуемый интерфейс.

А теперь представьте, что у вас появился инструмент, который позволяет провести дефрагментацию и декомпрессию этого диска, извлекая данные обратно в чистом, структурированном виде. Над созданием такого инструмента — LLM-deflate — автор и работал последнее время.

Читать далее

Что, если новые бенчмарки для ИИ станут появляться сами по себе?

Время на прочтение4 мин
Охват и читатели6.3K

ИИ уже хорошо решает сложные задачи, но когда доходит до реальных соревнований и живых проектов, вдруг выясняется — старые подходы к проверке его способностей не работают так гладко, как хотелось бы. Бенчмарки, по которым модели тренируются и друг с другом сравниваются, порой буквально застревают в прошлом: их сложно обновлять, они слишком формальные… а ведь задачи мира куда разнообразнее, чем любые придуманное вручную соревнование.

Но недавно появился неожиданный подход: зачем вручную собирать одни и те же стандартизированные тесты, когда сами наборы данных способны становиться свежими полигонами для ИИ? В исследовании MLE-Smith команда обучила агентов автоматически строить новые, реалистичные задачи прямо на потоке настоящих данных — без участия человека, но с сохранением структуры и смысла.

Почему это важно? Потому что такого рода «фабрики» могут радикально поменять, как мы оцениваем ИИ, и дать ему куда более честное, разнообразное поле для прокачки. В этой статье — как работает эта система, с какими трудностями она сталкивается и почему именно автоматизация бенчмарков может стать следующим шагом для всего ИИ‑сообщества.

Читать далее

Почему тесты на безопасность ИИ-агентов внезапно перестали работать

Время на прочтение4 мин
Охват и читатели5.4K

ИИ становится всё умнее — и вроде бы уже может справиться с самыми разными задачами в интерфейсе компьютера. Но вот парадокс: в настоящих программах даже самые продвинутые агенты до сих пор неловко кликают не туда, путают кнопки и часто просто теряются. Проблема не только в алгоритмах — не хватает настоящих, живых примеров, как действовать шаг за шагом.

Команда исследователей неожиданно нашла решение там, где его никто толком не искал: на YouTube. Вместо сложной ручной разметки они научили ИИ учиться на туториалах обычных пользователей и вычленять из роликов подробные инструкции по работе с реальными приложениями — вплоть до точек кликов и строк ввода текста. Оказалось, такого обучения хватает, чтобы агенты научились уверенно разбираться в браузерах, редакторах и медиаплеерах.

Почему именно такой способ оказался рабочим? И как это открывает новый этап в развитии ИИ для повседневных задач — без огромных затрат и костылей? Разбираемся, как машины начинают учиться «по-взрослому».

Читать далее

Что такое LLMS.TXT и почему эксперты продают бесполезный файл

Уровень сложностиСредний
Время на прочтение3 мин
Охват и читатели6.9K

Страшно, когда эксперты пишут, пережевывая то, что написали уже другие, да еще и бездумно с помощью нейросетей. А потом все дружно внедряют llms.txt, не разобравшись зачем он нужен и работает ли вообще.

Читать полностью

Борьба с дисбалансом классов. Undersampling

Уровень сложностиСредний
Время на прочтение10 мин
Охват и читатели4.8K

Привет, Хабр! На связи KozhinDev и ml-разработчик Приходько Александр. Это вторая статья в цикле публикаций по теме борьбы с дисбалансом классов в машинном обучении. В предыдущей статье мы рассмотрели актуальность данной проблемы и сравнили методы борьбы без внесения изменений в данные: балансировка весов классов и изменение порога принятия решения моделью. В данной части будем тестировать балансировку данных методом undersampling из библиотеки imblearn.

Читать далее

Ближайшие события

Как мы запустили GPU NVIDIA H200 в Selectel, или почему в золотую лихорадку непросто продавать лопаты

Уровень сложностиПростой
Время на прочтение11 мин
Охват и читатели13K

Еще несколько лет назад флагманские GPU встречались в двух сценариях — дорогостоящее обучение моделей с чистого листа или претрейнинг крупных архитектур. Под такие задачи строили целые кластеры: длинные эпохи, десятки миллиардов параметров, месяцы непрерывных расчетов. Даже для обучения относительно «легких» моделей требовались серверы с 4−8 топовыми GPU. А уже сегодня можно заказать сервер сразу с восемью GPU H200, да еще и в формате SXM.

Привет, Хабр! На связи Сергей Ковалёв, менеджер выделенных серверов в Selectel. В этой статье я расскажу, как индустрия оказалась в точке, когда нужны суммарные 1 128 ГБ видеопамяти и куда несется этот «локомотив». Под катом — все подробности.

Читать далее

Как открытые веса раскрыли секреты обучения GPT-5

Время на прочтение11 мин
Охват и читатели12K

Команда AI for Devs перевела статью, показывающую, что открытые веса — это не только про прозрачность, но и про утечку тайн обучения. На примере модели GPT-oss автор показывает, как можно восстановить части обучающего пайплайна и даже выявить, что GPT-5 видела фразы с сайтов для взрослых.

Читать далее

Research про рынок AI Приложений от венчурного инвестора, сделавшего х20 на 8-figures капитал за ICO-хайп и DeFi Summer

Уровень сложностиСредний
Время на прочтение2 мин
Охват и читатели4.1K

Лендскейп ИИ-рынка прямо сейчас (Q3 2025) очень похож на WEB3 2017-2018. LLM-гиганты, такие как OpenAI, Google, Antrhopic, X (Grok), Meta находятся в фазе притока максимального институционального капитала, инвестируют его в гонку мощностей, моделей и рекрутмента

Эта гонка очень похожа на инфраструктурную гонку L1 блокчейнов в 2017-18 годах. Ethereum, Solana, Avalanche, Binance Chain сначала привлекали сотни миллионов-миллиарды венчурного капитала, а затем соревновались в пропускной способности сети, скорости и стоимости транзакций.

Читать далее

Все еще борешься с галлюцинациями? Ты просто не умеешь их использовать

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели4.4K

Привет, Хабр! Меня зовут Василий Коновалов, я работаю в команде «Вычислительная семантика» в AIRI. Наша команда сфокусирована на исследовании галлюцинаций и на решении проблем доверительной генерации. Мы учимся находить галлюцинации и бороться с ними.

Но, возможно, мы не всегда должны делать это. Тем более, что научные работы показывают, что галлюцинации неизбежны. Вместо этого мы извлекли из них пользу: мы применили галлюцинации больших мультимодальных моделей для детекции странных картинок — то есть картинок, противоречащих здравому смыслу.

Об этом мы вместе с коллегами из Сколтеха, MWS AI и МФТИ написали научную статью Through the Looking Glass: Common Sense Consistency Evaluation of Weird Images, которую приняли на NAACL. Здесь я кратко расскажу, что именно мы сделали.

Читать далее

Почему ИИ-агенты ошибаются в простых веб-задачах — и как граф знаний помогает им перестать быть тупыми

Время на прочтение3 мин
Охват и читатели10K

ИИ сегодня может писать тексты, решать задачи и даже управлять сайтами — казалось бы, уже почти как человек. Но вот парадокс: самые продвинутые агенты до сих пор ошибаются на простых сценариях и путаются с кнопками или таблицами. Почему решения, работающие в теории, так часто валятся на реальных веб‑задачах?

Недавнее исследование раскрывает неожиданный нюанс. Оказалось, что дело не только в мощности модели или объёме данных — важнее то, «как» агент рассуждает и организует свои действия в сложной среде. Команда предлагает свежий подход: превращать веб и документы в особый «граф знаний», а тестовые ситуации собирать из него автоматически. Такой подход сразу проявляет слабые места даже у топовых ИИ.

Разбираемся, как устроен новый бенчмарк, почему агенты спотыкаются на пути к настоящей автономности, и — главное — что всё это говорит о будущем ИИ, который должен быть и умным, и по-настоящему полезным в наших цифровых задачах.

Читать далее

Мы решили задачу омографов и ударений в русском языке

Уровень сложностиСредний
Время на прочтение10 мин
Охват и читатели18K

Мы наконец решили задачу омографов. Конечно, с рядом оговорок, куда без них. Получилось пресловутое приключение на 20 минут.

Несмотря на кажущуюся простоту (задача по сути является бинарной классификацией, число кейсов с тремя валидными вариантами ничтожно мало), задача является просто кладезем различных "мин замедленного действия" и типичных граблей в сфере машинного обучения. Да, задачу "ёфикации" (расстановка буквы ё там, где люди её поленились поставить) мы считаем частным случаем задачи простановки ударений и омографов.

Также мы опубликовали наше продуктовое решение для простановки ударений (в омографах в том числе) в рамках репозитория silero-stress и также напрямую через pypi. В ближайшее время добавим эту модель и обновим наши публичные модели синтеза и раскатим более мощную "большую" (тоже маленькую по современным меркам) версию модели в приватные сервисы и для клиентов. Также мы опубликовали бенчмарки качества и скорости публичных академических решений … и там всё очень неоднозначно.

Наливайте себе чай, садитесь поудобнее. Мы постараемся описать наш путь длиной в вечность без лишних подробностей.

Сели, налили, читаем

Вся суть ансамблей на примере Случайного Леса и Градиентного Бустинга

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели8.6K

Изучая классическое машинное обучение, я постоянно натыкался на парадокс: материалов много, а интуитивно понятных объяснений, почему ансамбли — это так мощно, на удивление мало.
Я хочу это исправить. В этой статье мы разложим по полочкам саму концепцию ансамблей. А затем по логике ансамблей разберем двух "королей" этого подхода: Случайный Лес и Градиентный Бустинг.

Читать далее

Вклад авторов