Некоторые современные подходы в области обработки естественного языка
4 мин
Результаты научных исследований, полученные в последние годы в задачах распознавания речи [1], машинного перевода [2], определения оттенка предложения [3] и частей речи [4] показали перспективность нейросетевых алгоритмов глубокого обучения в сравнении с классическими методами обработки естественного языка (natural language processing). Однако, в области вопросно-ответных и диалоговых систем еще остается много нерешенных задач [5, 6]. В данной статье дан обзор результатов применения современных алгоритмов для задач обработки и понимания естественного языка. Обзор содержит описание нескольких разных подходов и не претендует на полноту исследований.

Human: how many legs does a cat have ?
Machine: four, i think .
Human: What do you think about messi ?
Machine: he ’s a great player .
Human: where are you now ?
Machine: i ’m in the middle of nowhere .
(из статьи A Neural Conversational Model. КДПВ из фильма Ex Machina)

Human: how many legs does a cat have ?
Machine: four, i think .
Human: What do you think about messi ?
Machine: he ’s a great player .
Human: where are you now ?
Machine: i ’m in the middle of nowhere .
(из статьи A Neural Conversational Model. КДПВ из фильма Ex Machina)

Соревнования по различным аспектам анализа текста проводятся на международной конференции по компьютерной лингвистике «Диалог» каждый год. Обычно сами соревнования проходят в течение нескольких месяцев до мероприятия, а на самой конференции объявляют результаты. В этом году планируются три соревнования:
Недавно мы рассказывали здесь о том,
Привет! В прошлый раз мы рассказали о том, как устроена технология понимания и анализа текстов на естественных языках ABBYY Compreno. Многие спрашивают нас – сколько уже можно разрабатывать технологию и где уже, наконец, продукты на базе Compreno. Как и обещали, сегодняшний материал посвящен продуктам и тому, какие именно задачи бизнеса они решают уже сегодня.
Как вы знаете, ABBYY занимается разработкой технологии анализа естественных языков Compreno. Сейчас система работает на английском и русском языках, и активно используется во многих проектах. Однако изначально сама технология была задумана как многоязычная, поэтому мы много внимания уделяем и «обучению» другим иностранным языкам. И тут можно провести некоторую аналогию с человеком: после изучения одного иностранного языка другие даются легче. В частности, сейчас мы добавляем в технологию немецкий язык и параллельно исследуем возможности рынка – есть ли интерес к этому направлению. Сразу оговоримся – пока речь о продуктах, поддерживающих немецкий, не идёт, мы в самом начале пути.










