
Привет, хабр! 👋
Позвольте представиться: я - Настя, Data Scientist и TeamLead в одной вполне себе серьезной компании (когда чистишь данные в 3 ночи, чувствуешь себя совсем не серьезно, но это детали). Веду свой скромный телеграм-канальчик, где делюсь болью, радостью и абсурдом нашей необъятной профессии. И вот сегодня хочу вынести на ваш суд тему, которая не дает спать спокойно не только мне, но и многим моим коллегам.
Помните тот трепетный момент, когда вы только начинали свой путь в Data Science? Я — очень хорошо. Картинка была радужной: ты — повелитель нейросетей, твои модели творят магию, а бизнес-задачи падают к ногам, поверженные точностью в 99.9% (ну или хотя бы 97%).
Курсы, будь то знаменитые онлайн-платформы или университетские программы, учат нас прекрасному: бустинги, метрики, градиентный спуск, SVM, k-means, сверточные слои... Это наш фундамент, наш джентельменский набор. И да, именно за этим набором охотятся 90% рекрутеров на собеседованиях. Создается стойкое ощущение, что я и интервьюер одновременно загуглили «Топ-50 вопросов на DS собеседовании» и теперь ритуально их отрабатываем. Ну, must have, что уж тут.
Но потом ты выходишь из уютного мира clean data и идеальных датасетов в дикие джунгли реального проекта. И здесь начинается магия настоящей работы. Та самая, про которую не снимают вдохновляющие ролики. А порой многие именно тут и бросают этот, казалось бы увлекательный и перспективный карьерный путь в мир ML...