Как стать автором
Обновить

Комментарии 128

Не могу классифицировать ситуацию: это действительно «хакатон на халяву» в пользу некоего «известного кондитера»?
Можно просто бахнуть миллиардик экспериментов методом Монте-Карло и получить результат с точностью до надцатого знака после запятой. Тот случай, когда написать два вложенных цикла быстрее, чем вспоминать все законы теории вероятностей.
Вот и выросло поколение. :)
Как подсказывает Википедия, метод Монте-Карло впервые был предложен в 1930-ом году Энрико Ферми. С тех пор уже не одно поколение выросло. :)
Речь о том, когда «бахнуть миллиардик экспериментов» стало «быстрее».
Помнится, во времена Декарта вероятности тоже считали с помощью кучи экспериментов, а не каких-то там законов. Так что ничего нового.
А вы бахните… Ведь интересно на сколько сойдется ответ.
Интересно, конечно.

Ну вот
#include <iostream>
#include <chrono>
#include <random>

int main()
{
	unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
	std::default_random_engine generator(seed);
	std::normal_distribution<double> distribution(0.0, 1.228518);

	const int tests = 500000;
	const int candiesInBox = 12;

	// let's test all max candy weight from 5.0 to 3.0 with step 0.1
	for (double m = 5.0; m > 3; m -= 0.01) 
	{
		int okBoxes = 0;
		for (int j = 0; j < tests; ++j)
		{
			double sum = 0;
			for (int i = 0; i < candiesInBox; ++i)
			{
				double number;
				for (;;)
				{	
					// let's generate candies till we have a good one
					number = distribution(generator);
					if (number < m && number > 0 - m)
						break;
				}
				sum += number;
			}

			if (sum >= -7.0 && sum <= 7.0)
				okBoxes++;
		}
		std::cout << "For max = " << m << " okBoxes=" << (double)okBoxes / (tests / 100) << "%" << std::endl;
	}


	return 0;
}



4.4 получилось на миллиарде тестов. Это если я, конечно, правильно понял что надо было считать. :)
не верный ответ)
Вы уверены, что сами правильно решили задачку? Как-то странно выглядит, что все решения включая численные, не совпадают с вашим.
да, если он на 35% отличается…
Странно, что на миллиарде тестов результаты так отличаются. Давайте проговорим словами, что мы моделируем. Вот есть машина, которая делает конфеты весом 25.8(3) грамма. Понятное дело, что машина не идеальна и конфеты имеют не точно этот вес, а какой-то, определяемый нормальным распределением со среднеквадратичным распределением 1.228518. Т.е. большинство конфет будет около 25.8 грамм плюс\минус пару грамм, но могут иногда встречаться и конфетки весом в килограм (нормальное распределение это позволяет).

Дальше все конфетки попадают на конвеер, одна за одной. Для того, чтобы в коробки не попадали те самые конфеты весом в килограм (а также слишком легкие) на конвеере стоит автомат, измеряющий вес конфеты и выбрасывающий её, если отклонение веса превышает некоторый вес M. Если М будет очень большим — у нас будет много коробок со слишком большим отклонением веса. Если М будет слишком маленьким — много конфет будет уходить в брак, что удорожает производство. Наша задача — подобрать это M таким образом, чтобы 90% наборов из 12-ти конфет имели суммарное отклонение веса не превышающее 7 грамм.

Так или не так?
Можно даже не отбрасывать неугодные конфеты, главное чтобы их процент был не больше некой величины и тогда мы все-равно попадем в нужный нам интервал.
Но тогда ответ на Вашу задачу — не какое-то одно число, а бесконечный набор пар (допустимый процент бракованых конфет — максимально допустимое отклонение массы). Akela_wolf вон привёл его ниже, но этот ответ Вам тоже не понравился.
Ну если этот процент бракованых конфет свести к 0, то уж тем более условие выполнится. Для того чтобы дать верный ответ, его нужно обосновать а не угадывать)
Не распыляйтесь перед автором поста. Тот же самый совет Akela_wolf.
Поскольку в самом начале не было ясно сформулировано, что требуется. С умыслом или без, но автор не написал что же хотели «кондитеры».

Видимо, требовалось найти в какой 1-alpha — дов. интервал попадает масса одна конфеты (подчиняется норм. распределению) и границы этого интервала, если границы 90% — дов. интервал коробки из 12 конфет — [303; 317].
1-alpha находится через error function и inverse error function от 0.9. Далее, через F находятся границы этого интервала.
За что купил, за то и продал. Из уст в уста, как говорится. Чего хотели кондитеры я сам не знаю, так как закон распределения в реальности может быть совсем не нормальным даже в ограниченом интервале. А предложенный вами метод решения верен, если вы правильно учли вероятности.
Вы что-то додумали, а в условии это не сказали :-). Вы чувствуете разницу в вашей формулировке и в моей?

Хорошо, вы хотели показать, что ответ будет «красивым» — 7*qnorm(0.9)/qnorm(0.95), где qnorm — квантиль функция стандартного норм. распределения.
Но такое в голове держать не будешь. Быстрее и логичнее произвести «естественные» расчеты, которые будут понятны любому, нежели такой ответ.
Додумал то же что и остальные. Мол если это нормальное распределение, то не может быть какого-то ограниченого интервала. И ответ вполне нормальный: масса не должна выходить за пределы m±dm в p процентах случаев.
Поэтому это больше похоже на «задачку из учебника», чем на случай из реальной жизни ;). Более не мешаю.
Решал задачу при помощи Монте-Карло, примерно в тех же условиях (автомат выбрасывает с конвейера конфеты, отличающиеся по весу на d от 25.8). Результат, очевидно, зависит от дисперсии конфеты. При весе 25.8±3 г получается d~2.0, а при весе конфеты 25.8±1.5 г получается d~2.2.

Т.е., чем ровнее отдельные конфеты, тем меньше их нужно выкидывать.
Численные методы дают неизбежную погрешность. Поэтому численное решение должно быть в виде X±Z, где X — найденное решение, Z — погрешность.
А какой же ответ?
~1.22
это сигма или отклонение?
отклонение
тогда не верно)
Стоп, я запутался. Сигма же и есть стандартное отклонение: In other words, the standard deviation σ (sigma) is the square root of the variance of X.
хорошо, сигма верна, а максимальное допустимое отклонение в массе конфеты? Это только половина решения.
Конкретизируйте вопрос, пожалуйста.
Если одна из миллиона конфет будет 20 или 30 грамм, это будет допустимо.
да хоть тонну, у нас же нормальное распределение.
Вот именно. Какой ответ ожидается-то? Что-то вроде «99% конфет должны быть 25.8 ± 3.15 г.»?
именно так, я писал уже об этом трижды.
Кстати, точность метода Монте-Карло в типичных случаях — примерно sqrt(1/N). Так что миллиард экспериментов даст в лучшем случае 5 знаков.
Максимально допустимое отклонение массы конфеты – от какого значения? От 25,8(3) г?
Да, вы правы, математическое ожидание для массы конфеты будет 310 / 12 = 25.8(3) грамма. Но как вы увидете, этот параметр не будет фигурировать в решении.
В итоге всё равно будет важна лишь дисперсия (функция от этого ±7).
Слушайте, я, вероятно, что-то туплю, но как согласуются понятия «максимальное отклонение» и «нормальное распределение»? На сколько я помню, при нормальном распределении массы конфеты отклонение от мат. ожидания теоретически не ограничено, просто большое отклонение маловероятно. Если же ограничено, то это уже не нормальное распределение, а какая-то его модификация. Может, надо найти допустимую дисперсию?
Меня тоже вначале смутили подобные мысли, но при решении все стало на свои места. И вы правы в том что необходимо искать допустимую дисперсию, все остальное из нее выплывает.
Тут вопрос не в смущении, а в корректной формулировке вопроса — какое должно быть максимальное допустимое среднеквадратичное отклонение веса конфеты, чтобы <далее по тексту>. А не просто отклонение.
после публикации решения, в выводах, я коснусь этого вопроса.
НЛО прилетело и опубликовало эту надпись здесь
да, я понимаю, смущает, но при правильном решении таки не выходит, на бесконечной выборке конечно.
НЛО прилетело и опубликовало эту надпись здесь
Да, именно так, существует не 0 вероятность что коробка конфет будет весить тонну, но из 1 млн. таких коробок примерно 900 000 будет в пределах 310±7 грамм.
Я вижу это ограничение во фразе: Найти максимально допустимое отклонение массы конфеты. Если мы допускаем, что у конфеты есть какое-то максимальное отклонение, не статистическое, а для каждой конфеты, то я не понимаю, как можно говорить о нормальном распределении. Это чисто терминологический момент.
а вы найдите такое отклонение массы конфеты, чтобы верятность пребывания в этих пределах удовлетворяла условию задачи.
Ох. Мое замечание не про поиск решения, оно про двусмысленность в формулировке. Что такое «максимальное отклонение массы конфеты»? Я, в силу своего знания естественного русского языка, понимаю это так: Если максимальное отклонение массы конфеты составляет 5 грамм от среднего 100 грамм, то ни одна конфета не может весить больше 105 или меньше 95 грамм. Дело в том, что такая формулировка несовместима, на мой взгляд, с фразой «Закон распределения считать нормальным».
А как Вы понимаете разу про «максимальное отклонение массы конфеты»?
Ну примерно так. Если конфета при производстве не выходит за пределы m±dm в p процентах случаев, то n таких конфет не выйдет за пределы M±dM в P процентах случаев. А если p будет 1 то уж тем более.
Вероятность чего? В задаче фигурирует вероятность выхода массы коробки за диапазон. Если для конфеты нужно найти диапазон, в который попадают те же 90% конфет, то, насколько я понимаю, получится отклонение 7/sqrt(12)=2.02 грамма — даже в таблицы можно не смотреть. Но вообще, «максимальное» отклонение и нормальное распределение несовместимы.
не верный расчет) согласен, не совместимы, но если нормальное распределение ограничить на найденом отклонении, то со 100% вероятностью условие выполнится.
Если нормальное распределение ограничить, то оно перестанет быть нормальным, а станет каким-то другим. У него будет два параметра — сигма и ограничение. И для выполнения условия задачи они будут как-то связаны, но решений явно будет бесконечно много.
Решение будет одно, для любого распределения и любого интервала. Главное чтобы были известны взаимосвязи.
Если масса конфет имеет нормальное распределение с сигмой 1.228, то условие про 90% коробок будет выполнено, при этом масса конкретной конфеты может иметь любое значение от минус до плюс бесконечности, и ограничивать ничего не нужно.
Если масса распределена равномерно (сигма исходного, не обрезанного, распределения равна бесконечности), то её нужно ограничить интервалом длиной 1.228*sqrt(12)=4.254 — и максимальное отклонение для конфеты будет 2.127 (здесь 12 не имеет отношения к числу конфет в коробке — это просто свойство равномерного распределения).
первый ваш абзац заставил меня пересмотреть мое решение и должен согласиться, что таки-да, Вы правы. Для конфеты будет существовать лишь один параметр — сигма, который полностью описывает ее свойства.
Вот-вот мысли о том же. Если считать просто допустимое стандартное отклонение оно выходит примерно 14,7 гр. Тогда 12 таких конфет укладываются в 310 плюс-минус 7 гр. с вероятностью 90%. Но как-то много вышло, если честно.

Действительно, такое ощущение что в условии задачи чего-то не хватает.
у вас действительно слишком большое стандартное отклонение)
Вы так сформулировали условие, что не ясно, почему не устраивает решение в лоб?
Масса одной произвольной конфеты ~ N(310/12, sd^2). В предположении о независимости этих случ. величин, масса коробки ~ N(310, 12*sd^2).
Находим sd^2 из уравнения F(X < 317) = 0.95 и, если требуется, умножаем результат на 12/11 (finite pop.correction). Оценка sd получена.
У вас неправильная формула. При сумме N случайных величин дисперсия будет sd^2/sqrt(N)
Ну конечно, почему я подумал что нужно делить? Забыл теорвер :)
не могли бы вы привести конкретную цифру? И почему <0.95? F — это функция распределения? Оценки sd мало, необходимо отклонение.
F — вероятность выполнения условия. Если величина X распределена нормально, то условие F(M-a <= X <= M+a)=0.9 сводится к F(x <= M+a)=0.95

Последнее является определением квантиля. Отсюда получаем, что a = 1.65*sd=7 гр., то есть sd=4.24. Это у коробки.
Для конфеты sd=4.24/sqrt(12)=1.22 гр.
Далее, если следовать правилу трех сигм, то вес конфеты должен быть в пределах 25.8 плюс-минус 3.67 гр. Тогда, с вероятностью 90% вес коробки укладывается в указанный диапазон
Опять я все перепутал, так нельзя делать, нужно обязательно через дисперсию. Для коробки sd=4.24, тогда D=17.98, тогда для конфеты D=17.98/sqrt(12)=3.46 и sd для отдельной конфеты составляет sqrt(3.46)=1.86

Конечный результат получается такой: математическое ожидание 25.8, среднеквадратическое отклонение 1.86
не верно)
Да ну? Вечером голова не соображает, завтра утром еще подумаю. Но мне кажется, что вы все-таки перепутали верно и неверно :)
Нет, у вас все правильно
верно)
sd = 1.228518 (fpc игнорируем). Это и есть ответ.
F — кумулятивная функция нормального распределения
0.95 в силу симметричности плотности нормального распределения.

Код на R
 sd <- uniroot(function(x) pnorm(317, 310, sqrt(12)*x) - 0.95, lower = 0, upper = 2)$root 

Проверка

set.seed(123)
n <- 10000
boxes <- sapply(1:n, function(i) sum(rnorm(12, 310/12, sd)))
quantile(boxes, c(0.05, 0.95))

Результат
5% 95%
303.0068 317.0503
стандартное отклонение верно, но ответом должно быть максимальное отклонение в массе конфеты.
Найденное значение — максимально допустимое стандартное отклонение. В том смысле, что при меньшем sd по-прежнему масса не менее 90% коробок будет лежать в требуемом интервале, а при большем sd таких коробок будет менее 90%.
Ясно, что носитель нормального распределения не ограничен сверху и снизу. Если вы подразумевали truncated normal distribution или какие-то другие дополнительные условия, то об этом надо было заявить внятно в самом начале, а не играть в угадайку.
Ну примерно так. Если конфета при производстве не выходит за пределы m±dm в p процентах случаев, то n таких конфет не выйдет за пределы M±dM в P процентах случаев

Я уже писал. От sd к внятному ответу один маленький шажочек, но почему-то никто не может до него догадаться…
На практике применяют простое правило «3 сигмы», которое дает вероятность попадания в заданный интервал 99%. Остальное — вопрос требуемой точности
Видимо, Вы имеете ввиду F(303<X<317)=0.90?
Если величина X распределена нормально, то условие F(M-a <= X <= M+a)=0.9 сводится к F(x <= M+a)=0.95

А да, действительно.
Ну примерно так. Если конфета при производстве не выходит за пределы m±dm в p процентах случаев, то n таких конфет не выйдет за пределы M±dM в P процентах случаев


Итак, конечный ответ. Если вес отдельно взятой конфеты 25,8±5,58 в 99% случаев (3 сигмы), то вес коробки из 12 конфет 310±7 в 90% случаев
Итак, конечный (самый конечный) ответ. Если вес отдельно взятой конфеты 25,8±3,66 в 99% случаев (3 сигмы), то вес коробки из 12 конфет 310±7 в 90% случаев
Близко, но все-таки нет)
С какой точностью требуется ответ?
2-3 цифры после запятой будет достаточно. У вас он в первой цифре после запятой уже не тот.
Хорошо, еще одна попытка, считаю с максимальной точностью.
Вес конфеты должен быть распределен нормально, матожидание 25.833 гр, стандартное отклонение 1.228 гр

Квантили:
99% — 2.326. Таким образом, если вес 99 конфет из 100 попадает в диапазон 25.833±2.857, то вес коробки из 12 конфет укладывается в диапазон 310±7 с вероятностью 90%
99,9% — 3.090 Таким образом, если вес 999 конфет из 1000 попадает в диапазон 25.833±3.796, то вес коробки из 12 конфет укладывается в диапазон 310±7 с вероятностью 90%
99.99% — 3.715 Таким образом, если вес 9999 конфет из 10000 попадает в диапазон 25.833±4.564, то вес коробки из 12 конфет укладывается в диапазон 310±7 с вероятностью 90%
Наглючил с квантилями, нужно считать не 99%, а 99,5% и т.д. уровни.

Таким образом:
Вес конфеты должен быть распределен нормально, матожидание 25.833 гр, стандартное отклонение 1.229 гр

Квантили:
95% — 1.645. Таким образом, если вес 9 конфет из 10 попадает в диапазон 25.833±2.021, то вес коробки из 12 конфет укладывается в диапазон 310±7 с вероятностью 90%
99.5% — 2.576. Таким образом, если вес 99 конфет из 100 попадает в диапазон 25.833±3.164, то вес коробки из 12 конфет укладывается в диапазон 310±7 с вероятностью 90%
99.95% — 3.291 Таким образом, если вес 999 конфет из 1000 попадает в диапазон 25.833±4.042, то вес коробки из 12 конфет укладывается в диапазон 310±7 с вероятностью 90%
99.995% — 3.891 Таким образом, если вес 9999 конфет из 10000 попадает в диапазон 25.833±4.78, то вес коробки из 12 конфет укладывается в диапазон 310±7 с вероятностью 90%
99.9995% — 3.891 Таким образом, если вес 99999 конфет из 100000 попадает в диапазон 25.833±5.427, то вес коробки из 12 конфет укладывается в диапазон 310±7 с вероятностью 90%
вы разберитесь, какой же процент все-таки должен быть)
Я думаю ответ сформулирован достаточно четко: «Если вес X конфет из Y попадает в диапазон ...».

Вообще, задачу стоило сформулировать иначе: в какой диапазон должен укладываться вес 99% (99,9%, 99,99% — точность по желанию) конфет, чтобы вес 90% коробок из 12 конфет укладывался в диапазон 310±7 гр.
Ничего формулировать не нужно, этот диапазон содержится в условии задачи)
Чтож, видимо буду ждать вашего решения
У меня так получилось.
Если вес коробки распределен нормально, то вероятность симметричного отклонения (попадания в интервал +-7) равна удвоенному интегралу вероятности (функции Лапласа).
P(303 < S < 317) = 2 * Ф(7 / sigmaS),
что равно 0.9 из условия.
Отсюда 7/sigmaS = обратная Ф от 0.45 ~ 1.65
и sigmaS = 4.(24) в периоде.
Дисперсия веса коробки sigmaS равна сумме (одинаковых) дисперсий весов конфет sigmaK.
То есть sigmaS^2 = 12 * sigmaK^2
отсюда sigmaK = ((7 / 1.65)^2 / 12)^.5 ~ 1.22468
Теперь в обратную сторону
90%-ная вероятность попадания веса конфеты K в интервал (K-x, K+x) равна
P(|310 / 12 — K| < x) = 2 * Ф(x / sigmaK)
Вероятность у нас должна быть та же, 0.9, следовательно,
1.65 = x / sigmaK
x = 1.65 * 1.22468 ~ 2.0207
Получается, что отклонение не должно превышать 2.0207 грамма с вероятностью 90%.
Верно все кроме одного. Впрочем то же что и у остальных)
Так намекните что это одно :) может проблема в недопонимании условия?
с чего вы взяли что для конфеты вероятность должна быть такой же как для коробки?
А какой она должна быть? По идее, это данные должны быть в условии задачи
они и так в условии)
У нас с вами решение для случая 90% полностью сошлось. И, судя по изложенному решению, мы шли к нему одним и тем же путем.
2.02=7/sqrt(12). Все остальные формулы для случая той же вероятности не нужны :)
Да я решил полностью расписать, раз уж такая рубка пошла, чтобы проверить, что нигде не вру :)
Ну можно так.
Если принять, что вес конфеты распределён по нормальному и может улетать куда угодно, то надо потребовать, чтобы 119 из 120 конфет были в интервале.
Тогда гарантированно только одна коробка из десяти будет бракованной (в которую попадёт эта безумная конфета).
Значит вероятность попадания в нужный интервал нужно зафиксировать на 119/120 ~ 0,992
Отсюда максимальное отклонение 2.64 * 1.22468 ~ 3.2332
Это вы имели в виду?
Ой как рядом, но ответ выдан на угад. Представьте что в одной коробке 2 улетевших конфеты, но одна в плюс, а другая в минус и коробка удовлетворяет условию)
Мне кажется, что вероятность такого попадания двух улетевших мала, и ей можно пренебречь.
1/120 * 1/120 / 2 = 0.35e-5
На бесконечной выборке будет бесконечное количество коробок, состоящих только из улетевших конфет. Давайте не будем пренебрегать малыми вероятностями)
Я это говорю к тому, что если вы говорили о конкретной практичной задаче, то и ответ должен быть практичным.
Получать третий знак после запятой для отклонения веса конфеты в граммах мне кажется несколько чрезмерным.
Как говорил один мой преподаватель: «Если вы считаете точность попадания боевого блока метрового диаметра в микронах, то надо что-то исправлять в консерватории».
Мы измеряем с точностью десятков микрон расстояние до трёхмиллиметрового лазерного пятна. Люди довольны, но хотят, чтобы с такой же точностью определялось его поперечное положение. Что они имеют в виду? Пятно совсем не круглое…
Да, но эти коробки попадут в разрешенные 10% брака. Так что пренебрегать ими разрешено условиями задачи.
Нее… Автор имеет в виду, что они наоборот вернутся в группу «хороших» коробок, поэтому требование можно смягчить (увеличить допустимый интервал).
Думаю условие задачи поставлено некорректно, точнее не хватает данных о распределении самих конфет. Нам известно, что распределение нормальное, но не известно ни среднее ни дисперсия. К примеру, в условиях задачи никак не ограничено среднее. Если представить среднее 10 грамм (аппарат не исправен), то задача вообще не имеет решения. Да и само слово отклонение подразумевает симметрию, насколько я понимаю, нужно добавить в условие, что нормальное распределение имеет мат. ожидание = 310/12. Возможно информация о дисперсии не нужна, надо проверить.
то что мат. ожидание 310/12 явно понятно. Дисперсия конфет находится из дисперсии коробок. Диспресия коробок находится из доверительного интервала и известных данных.
Честно говоря, это не очевидно, что мат. ожидание 310/12, оно вполне может быть 305/12 с маленькой дисперсией.
Я не совсем понимаю слово «отклонение»? Это производственный термин, при котором мы не пропускаем конфету в коробку, то есть если конфета отклонилась на 5 грамм от 310/12, то она не проходит в коробку и нас спрашивается определить максимальное значение этого отклонения?

Если я правильно понял условие, то как раз знание дисперсии здесь обязательно. Понятно, что сумма НРСВ — это НРСВ, с sigma = sigma_bonbon / sqrt(12), тогда если Ф (7*sqrt(12)/sigma_bonbon) >= 0.45, нам вообще не нужно отсеивать конфеты! То есть при условии (7*sqrt(12)/sigma_bonbon >=1.65), что дисперсия конфет < 14.696, максимальное отклонение = infinity, потому что нам вообще не надо ничего отфильтровывать.
Вы правы) я ошибался) на самом деле действительно при найденной сигма, достаточно конфеткам возникать в интервале от минус бесконечности до плюс, чтобы удовлетворять условиям задачи.
Это стандартная задача статистического контроля.
Здесь есть генеральная совокупность с определённым математическим ожиданием и дисперсией.
Если распределение генсовокупности нормально (это можно принять в большинстве случаев с достаточно сильными ограничениями), то задача контроля по выборке определить оценки параметров, то есть, оценку МО и дисперсии.
Если задано, что коробка должна быть весом 310 с допустимым отклонением 7, то значит 310 — наиболее «правильное» значение и стремиться надо к нему, а ошибку определять полуразмахом допустимого интервала.
Тогда вес конфеты должен быть тоже 310/12, а не 305/12. Это оценка с максимальным правдоподобием при заданном нормальном распределении независимых несмещённых величин, и по вероятности сходится к ней.
Иначе получаются слишком экзотичные допущения.
На самом деле я понял в чём идея задачи, но пока не могу сообразить как решить.
Дело в том, что если мы выбираем максимальное значение допустимого отклонения, то тем самым обрубаем хвосты нормального распределения, и сумма переменных с таким обрубленным распределением ограничена сверху и меньше, чем сумма необрубленных.
Доверительный интервал отклонения суммы в данном случае будет функцией от значения допустимого отклонения веса конфеты.
Надо найти максимальное значение отклонения, которое установит требуемый доверительный интервал (+-7 при 0.9).
Обрубаем, но если дисперсия конфет изначальна мала, то ничего обрубать не надо и так получится 90% с допустимой погрешностью. В данном случае допустимое отклонение — бесконечность.
Дисперсия конфет задана дисперсией коробки
Уже автор согласился) Если дисперсия коробки задана, то где? Функция распределения коробки неизвестна, потому что она как раз зависит от допустимого отклонения.
ну из разброса в ±7 и вероятности в 0.9 вы можете найти сигму для коробки. Это же элементарно.
А кто сказал, что там нормальное распределение? И как-то вы легко спутали процесс с условием. Представьте производственный процесс, вы хотите сказать, что из условий регулятора (а это выпускать +- 7 в 90%), отбрасывая не нужные конфетки вы можете найти сигму для конфеты (а это аппарат). Понятно, что если вы докажите, что коробка нормальное распределение, вы найдете сигму, но вопрос в другом. Процесс и максимально допустимое отклонение зависит от сигмы одной конфеты, а не коробки.
Если конфета производится по нормальному распределению и не отбрасывается, то и вес коробок также будет распределен нормально, но со своим сигма и мю. Наша задача подстроить сигму конфеты так, чтобы площадь под кривой распределения для коробок на интервале M-dM… M+dM была равна 0.9
Если конфеты не отбрасываются, то вес коробки распределен нормально, а если отбрасываются, то распределиние зависит от 3х параметров.
Вот сейчас пытаюсь решить ту же задачу для случая, когда сигма аппарата изготовителя — константа и больше чем 1.2285. Интересно на сколько нужно ограничить разброс, чтобы удовлетворять условию задачи.
Наихудший случай — 25.833±1.167. Это когда автомат выпускает конфеты только двух масс — 24.667 и 27.000 гр с равной вероятностью.
Естественно это параметр, правда, у меня получилось другое число от 1.2285. Надо найти распределение, когда конфеты отсеиваются, то есть F(mean, sigma, threshold) — если оно нормальное, то дальше просто. Можно путем непрерывности функций найти точку, но надо теоретически посчитать это распределение, я пока не нашел.
Я, наверное, сдамся, вот что у меня получилось. Вероятность, что погрешность конфеты составляет меньше ε, P( -ε <= x <= ε) = 2 * Ф (ε / σ) — 1. Обозначим порог отсеивания λ, тогда получаем след. функцию распределения
F(x | x <= -λ) = 0
F(x | x >= λ) = 1
F (x | x >= 0) = 1/2 + ( Ф (x / σ)  - 1/2) * ( 1 + 2 * Ф (-λ / σ) + (2 * Ф (-λ / σ)) ^ 2 + ... = 1/2 + ( Ф (x / σ) - 1/2 ) / (1 - 2 * Ф (-λ / σ) ).

Отсюда можно найти плотность распределения:
f(x | x <= -λ || x >= λ ) = 0
f(x | ... ) = e ^ (- x*x / (2 *σ*σ) ) / ( σ * sqrt( 2 * π) *  (1 - 2 * Ф (-λ / σ)) ) 


Несмотря на, то что распределение «похоже» на нормальное, оно отнюдь не является нормальным. Говорить о том, что сумма будет нормальной тоже неправильно, несмотря на допущение ЦПТ тут явно влияют параметры λ и σ. К сожалению посчитать сумму этих двух случайных величин не получается. Если получится посчитать численно распределение, то дальнейшее останется делом техники. Найти 90% квантиль = 7, который при заданном σ, максимизирует λ.
Да, тут самое сложное найти рещультирующее распределение для коробки, имея обрезанное нормальное для конфеты. Дальше — дело техники.
Результирующее распределение для независимых величин в строгой теории делается по формуле свёртки.
Но мне вот кажется, что эту задачу можно решить проще.
А в конце концов, как в первых постах сразу предложили можно решить семплированием.
А почему в формуле вероятности, что погрешность меньше эпсилон, отнимается единица?
Итак, вроде бы все обсудили. Хотелось бы увидеть ваше решение
Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.