Как стать автором
Обновить

❓100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_14 (Часть_1)

Какие подходы могут помочь модели сохранить стабильность популяции при изменении данных?

  1. Кросс-валидация (Cross-Validation): Кросс-валидация позволяет оценить производительность модели на разных подмножествах данных. Например, метод k-fold cross-validation разбивает данные на k подмножеств, называемых фолдами. Модель обучается на k-1 фолдах и оценивается на оставшемся фолде. Этот процесс повторяется k раз, каждый раз используя разные фолды. Таким образом, модель оценивается на различных подмножествах данных, что помогает выявить ее стабильность популяции.

  2. Стратифицированная выборка (Stratified Sampling): При формировании обучающей и тестовой выборок можно использовать стратифицированный подход. Это означает, что при разделении данных на выборки будут сохранены пропорции классов или распределений признаков. Такой подход помогает уменьшить возможное искажение данных при изменении популяции.

    t.me/DenoiseLAB (Еесли вы хотите быть в курсе всех последних новостей и знаний в области анализа данных);

Теги:
Всего голосов 1: ↑1 и ↓0+1
Комментарии0

Публикации

Истории

Работа

Ближайшие события

7 – 8 ноября
Конференция byteoilgas_conf 2024
МоскваОнлайн
7 – 8 ноября
Конференция «Матемаркетинг»
МоскваОнлайн
15 – 16 ноября
IT-конференция Merge Skolkovo
Москва
22 – 24 ноября
Хакатон «AgroCode Hack Genetics'24»
Онлайн
28 ноября
Конференция «TechRec: ITHR CAMPUS»
МоскваОнлайн
25 – 26 апреля
IT-конференция Merge Tatarstan 2025
Казань