Обновить

Как мы научили ИИ вести себя как человек — и почему это оказалось важнее остального 🤖🧠

Привет, Хабр.

За последний год поиск работы для инженеров всё больше стал напоминать кликинг-симулятор: десятки однотипных откликов, шаблонные сопроводительные письма, часы механических действий. ⏳

При этом от кандидата всё ещё ждут осмысленности и персонализации — но обеспечивать её приходится вручную, в масштабе, который плохо сочетается с нормальной жизнью и развитием.

В какой-то момент я решил посмотреть на эту проблему как на инженерную задачу и попробовать автоматизировать рутинную часть процесса. Так появился ИИ-ассистент OfferMate.

Но довольно быстро стало понятно: автоматизация — это не всегда про “делать быстрее и больше”.

Почему «больше автоматизации» — плохая идея ⚠️

Первая версия ассистента решала задачу максимально прямолинейно:

  • быстрый сбор вакансий;

  • частые проверки;

  • высокая плотность запросов;

  • ставка на объём.

С инженерной точки зрения всё выглядело логично:
больше данных → больше откликов → выше шанс результата.

На практике это оказалось ошибкой.

Такой подход:

  • создаёт пиковые нагрузки 📈;

  • выглядит неестественно;

  • повышает риск блокировок;

  • и, главное, не отражает реального поведения человека.

Рынок труда — не нагрузочный тест и не очередь сообщений в Kafka.
Он реагирует не только на результат, но и на паттерн поведения.

Ключевое открытие: автоматизация должна быть незаметной 🕵️‍♂️

В какой-то момент мы осознали простую вещь:
эффективный ассистент должен вести себя не как бот, а как человек.

Опытный специалист:

  • не откликается на всё подряд;

  • читает вакансии выборочно;

  • делает паузы;

  • меняет темп;

  • реагирует на контекст.

И если автоматизация не воспроизводит этот паттерн — она рано или поздно ломается.

Это стало точкой, после которой мы полностью пересобрали архитектуру 🔄

Что изменилось в подходе ⚙️

Вместо «ускорения всего» мы сфокусировались на естественности поведения.

Теперь система:

  • 🧠 анализирует вакансии, а не просто собирает их пачками;

  • 👤 имитирует человеческий ритм: паузы, разную скорость, приоритеты;

  • 🔄 адаптируется к изменениям в реальном времени;

  • 🛡️ работает в рамках правил платформ, не создавая аномалий.

Что это дало на практике 📊

Самое интересное — эффект оказался не столько техническим, сколько продуктовым.

  • ✅ Конверсия откликов выросла — потому что система стала бить не по площади, а в цель;

  • ✅ Пользователи перестали вмешиваться вручную — ассистент стал предсказуемым;

  • ✅ В среднем освобождается 10–15 часов в неделю, которые раньше уходили на рутину.

Именно здесь стало понятно, что мы движемся в правильном направлении 🚀

OfferMate 2.0: не «автоматизация всего», а умное делегирование 🧩

Этот подход лёг в основу новой версии продукта, которую мы сейчас допиливаем.

В OfferMate 2.0 мы сознательно ушли от идеи «пусть ИИ делает всё» и сфокусировались на том, где он действительно полезен:

  • 🤖 анализ резюме и вакансий с учётом контекста, а не ключевых слов;

  • ✍️ генерация сопроводительных писем под конкретную компанию;

  • 🛡️ нативное и естественное взаимодействие с платформами;

  • 📈 прозрачная аналитика и контроль со стороны пользователя.

Отдельно экспериментируем с новыми функциями — например, автоматизацией типовых онлайн-тестов. Но здесь действуем максимально осторожно и итеративно.

Итоговые мысли 🧠

Автоматизация ради автоматизации почти всегда приводит к хрупким решениям.
А вот автоматизация, которая копирует человеческую логику и ритм, — работает долго и стабильно. К этому мы и идем.

И да, если интересно следить за развитием проекта, архитектурными находками и экспериментами — я регулярно пишу об этом в блоге.

👉 https://t.me/offermatecrew

Там же делимся апдейтами OfferMate 2.0 и результатами тестирования.
Буду рад вопросам и обсуждению в комментариях 👇

Теги:
-4
Комментарии0

Публикации