Как стать автором
Поиск
Написать публикацию
Обновить
61
0

Создатель Telegram-канала Нейрон — @neurondata

Отправить сообщение

A selection of Datasets for Machine learning

Время на прочтение5 мин
Количество просмотров7.3K
Hi guys,

Before you is an article guide to open data sets for machine learning. In it, I, for a start, will collect a selection of interesting and fresh (relatively) datasets. And as a bonus, at the end of the article, I will attach useful links on independent search of datasets.

Less words, more data.

image

A selection of datasets for machine learning:


Read more →

Подборка датасетов для машинного обучения

Время на прочтение6 мин
Количество просмотров173K
Привет, читатель!

Меня зовут Рушан, и я автор Telegram‑канала Нейрон. Не забудьте поделиться с коллегами или просто с теми, кому интересны такие статьи.

Перед тобой статья-путеводитель по открытым наборам данных для машинного обучения. В ней я, для начала, соберу подборку интересных и свежих (относительно) датасетов. А бонусом, в конце статьи, прикреплю полезные ссылки по самостоятельному поиску датасетов.

Меньше слов, больше данных.

image

Подборка датасетов для машинного обучения:


Читать дальше →

Ищем свободное парковочное место с Python

Время на прочтение14 мин
Количество просмотров66K
image

Меня зовут Рушан, и я автор Telegram‑канала Нейрон. Не забудьте поделиться с коллегами или просто с теми, кому интересны такие статьи.

Я живу в хорошем городе. Но, как и во многих других, поиск парковочного места всегда превращается в испытание. Свободные места быстро занимают, и даже если у вас есть своё собственное, друзьям будет сложно к вам заехать, ведь им будет негде припарковаться.

Поэтому я решил направить камеру в окно и использовать глубокое обучение, чтобы мой компьютер сообщал мне, когда освободится место:

image

Это может звучать сложно, но на самом деле написать рабочий прототип с глубоким обучением — быстро и легко. Все нужные составляющие уже есть — нужно всего лишь знать, где их найти и как собрать воедино.

Поэтому давайте немного развлечёмся и напишем точную систему уведомлений о свободной парковке с помощью Python и глубокого обучения
Читать дальше →

Работаем с Wordstat правильно. Полное руководство

Время на прочтение4 мин
Количество просмотров258K
image

Хабр, привет!

Меня зовут Рушан, и я автор Telegram‑канала Нейрон. Не забудьте поделиться с коллегами или просто с теми, кому интересны такие статьи.

Многие люди не знают, как работать с трендами в интернете, где их искать. Перед тем, как начинать бизнес не знают, где посмотреть будет ли этот бизнес вообще популярен и нужен ли он. Поэтому напишу полный туториал, чтобы закрыть все вопросы по этой тематике.

Работать мы будем со специальным сервисом по сбору поисковых запросов пользователей Яндекса Вордстатом, интерфейс которого довольно прост и понятен:

image

В начале, по традиции, поставлю цели:

  • Понять весь функционал и научиться работать с Вордстатом;
  • Как правильно собирать семантику с максимальной релевантностью и CTR >50%;
  • Так как мы на Хабре, поработаем с API Wordstat напрямую.
Читать дальше →

Прорабатываем навык использования группировки и визуализации данных в Python

Время на прочтение5 мин
Количество просмотров19K
image

Привет, Хабр!

Сегодня будем прорабатывать навык использования средств группирования и визуализации данных в Python. В предоставленном датасете на Github проанализируем несколько характеристик и построим набор визуализаций.

По традиции, в начале, определим цели:

  • Сгруппировать данные по полу и году и визуализировать общую динамику рождаемости обоих полов;
  • Найти самые популярные имена за всю историю;
  • Разбить весь временной промежуток в данных на 10 частей и для каждой найти самое популярное имя каждого пола. Для каждого найденного имени визуализировать его динамику за все время;
  • Для каждого года рассчитать сколько имен покрывает 50% людей и визуализировать (мы увидим разнообразие имен за каждый год);
  • Выбрать 4 года из всего промежутка и отобразить для каждого года распределение по первой букве в имени и по последней букве в имени;
  • Составить список из нескольких известных людей (президенты, певцы, актеры, киногерои) и оценить их влияние на динамику имен. Построить наглядную визуализацию.

Меньше слов, больше кода!

И, поехали.
Читать дальше →
2

Информация

В рейтинге
Не участвует
Откуда
Москва, Москва и Московская обл., Россия
Дата рождения
Зарегистрирован
Активность

Специализация

Специалист
Lead