Специалист отдела перспективных исследований компании «Криптонит» Игорь Нетай на протяжении нескольких лет изучал фундаментальную проблему быстрой потери точности вычислений. Она связана с повсеместно применяемым форматом экспоненциальной записи чисел и наиболее остро затрагивает сферы AI, HPC и Big Data.
PhD Math,ML research,algorithms,algebraic geometry
Adversarial suffixes или можно ли получить ответ на любой вопрос от LLM?
Мы уже писали про проблемы безопасности в языковых моделях и сегодня мы поговорим о состязательных суффиксах или как их ещё называют Adversarial suffixes. Такие суффиксы - это один из инструментов для получения всего, что вы хотите, добавляя их в запросы к LLM , они помогают получить ответ на любой ваш сокровенный вопрос (о религии, политике, опасных аспектах социальных медиа и многом другом).
Как математика улучшает геосервисы и помогает быстрее сориентироваться
Сегодня всё чаще требуется учитывать географическую привязку и выполнять поиск в локальном окружении клиента. Иными словами, регулярно возникает необходимость найти что-то (или кого-то) рядом с конкретным пользователем. «Где ближайший банкомат?», «Кто из друзей поблизости?», «Какие тут аптеки?». Подобные запросы миллионами поступают в сервисы геолокации каждый день, при этом существующие подходы к решению этой задачи не исчерпали возможностей оптимизации. Наверняка вы не раз сетовали на то, как долго обновляются метки на карте.
В этой статье эксперт отдела перспективных исследований российской компании «Криптонит» Игорь Нетай рассказывает о способе ускорить обнаружение объектов, принадлежащих одному географическому региону с произвольно заданными размерами. Материал станет частью научной работы о перспективах применения H-кривых в геохешинге.
С помощью рассмотренной в этой статье алгоритмической оптимизации можно быстрее выполнять поиск в различных масштабах — от полушария Земли до конкретного здания.
Координаты одной строкой
Удобство географической персонализации постепенно вытеснило паранойю, и во многих онлайн-сервисах теперь открыто используются данные о местоположении пользователей и различных объектов. Делаете заказ через интернет? Вам предложат забрать его в пункте выдачи поближе к дому. Вызываете такси? Сначала запрос передаётся водителям рядом с вами. Ищете кафе? На карте отобразятся ближайшие.
Все эти алгоритмы сводятся к решению одной и той же задачи: они определяют, какие координатные точки из базы данных входят в тот же условно заданный регион, что и указанная в запросе целевая точка (как правило, обозначающая местоположение пользователя). Для этого используется система кодирования географических координат в виде значений хеш-функции, называемых геохеши.
О точности вычислений: как не потерять данные в цифровом шуме
Специалист отдела перспективных исследований компании «Криптонит» Игорь Нетай изучил процесс потери точности вычислений и написал библиотеку, доступную на GitHub, которая помогает разработчикам контролировать точность расчётов на каждом этапе вычислений. Данная библиотека особенно актуальна в сфере машинного обучения и анализа (больших) данных, где накопление ошибок может сильно искажать результат.
Информация
- В рейтинге
- 3 469-й
- Откуда
- Москва, Москва и Московская обл., Россия
- Дата рождения
- Зарегистрирован
- Активность