Всем привет! Меня зовут Алексей Рудак и я основатель компании Lingvanex, которая занимается решениями в области машинного перевода и транскрипции речи. Для нашей работы мы постоянно тренируем языковые модели. Наша команда использует десятки разных видеокарт, выбранных под разные задачи: где-то нужна мощная станция DGX, а где-то достаточно старой игровой карты типа RTX 2080Ti. Выбор оптимальной конфигурации GPU сэкономит вам не только время на тренировку, но и деньги.
Интересно то, что в интернете довольно мало статей с тестами GPU именно для скорости тренировки языковых моделей. В основном встречаются только тесты inference. Когда вышел новый чип H100, в отчете NVidia было указано, что при тренировке он быстрее A100 до девяти раз, но для наших задач новая карта оказалась всего на 90% быстрее старой. Для сравнения: у наших облачных провайдеров разница в цене между этими GPU составляла 2 раза, поэтому переходить на новый H100 для экономии денег смысла не было.
В дополнение к этому мы брали на тест станцию DGX, которая состоит из 8 видеокарт A100 80GB и стоит 10 тысяч долларов в месяц. После теста стало ясно что соотношение цена / производительность этой станции нас полностью не устраивает и за эти деньги мы можем взять 66 x RTX 3090, которые в сумме принесут гораздо больше пользы.
Наши языковые модели для перевода имеют до 500 миллионов параметров (в среднем от 100 млн до 300 млн). Возможно, если значительно увеличить кол-во параметров, то соотношение цена / производительность от DGX станет лучше. На данный момент мы не тренируем большие языковые модели, которые могут переводить сразу между всеми языками во всех вариациях, а применяем отдельные языковые модели под каждую языковую пару, например англо-немецкую. Каждая из таких моделей занимает от 120 до 300 Mb.