Тема приема и анализа сверхдлинных волн весьма интересна, но на Хабре она упоминается весьма редко. Попробуем восполнить пробел, и посмотрим как это работает.

Передатчик VLF в Японии (с) en.wikipedia.org/wiki/Very_low_frequency
Пользователь
Меня всегда интересовало низкоуровневое программирование – общаться напрямую с оборудованием, жонглировать регистрами, детально разбираться как что устроено... Увы, современные операционные системы максимально изолируют железо от пользователя, и просто так в физическую память или регистры устройств что-то записать нельзя. Точнее я так думал, а на самом деле оказалось, что чуть ли не каждый производитель железа так делает!
В мире существует много явлений с сомнительной и спорной репутацией. Например, сюда можно отнести хоккей на траве, датскую квашеную селедку и мужские трусы-стринги. А еще к этому списку можно с абсолютной уверенностью добавить вирусы на Python.
Трудно сказать, что толкает людей на создание вредоносного ПО на этом языке программирования. Обилие выпускников “шестимесячных курсов Django-программистов” с пробелами в базовых технических познаниях? Желание нагадить ближнему без необходимости учить C/C++? Или благородное желание разобраться в технологиях виримейкерства путем создания небольших прототипов вирусов на удобном языке?
ssh
. Это — отличный инструмент, но мне всегда казалась в нём странной одна деталь. Несмотря на то, что ssh-соединения позволяют передавать файлы с применением scp
и sftp
, у нас нет возможности перемещать файлы между локальной и удалённой системой, не запуская программу на локальном хосте, или не подключаясь к локальной машине с удалённой.sshfs
, но на удалённой, на которую вы, возможно, не можете устанавливать программы, ничего менять не придётся. Если же потратить на настройку систем некоторое время, и если на клиентском компьютере имеется работающий ssh-сервер, то можно будет ещё и монтировать локальные директории на удалённых системах. При этом не придётся беспокоиться о блокировке IP-адресов или портов. Фактически, если вы способны подключиться к удалённой машине, это означает, что вам удастся и то, о чём я хочу рассказать.Всем привет!
Я работаю над WebRTC - фреймворком для аудио-видео конференций (или звонков? проще говоря - real time communication). В этой статье я хочу описать интересную задачу, вставшую передо мной, и как она была решена. В задаче, по сути, потребовалось минимизировать lcm нескольких вещественных чисел с дополнительными ограничениями. Пришлось применить совсем чуть чуть теории чисел или хотя бы логики.
В этой статье мы подробно разберем понятие сопрограмм (coroutines), их классификацию, детально рассмотрим реализацию, допущения и компромиссы, предлагаемые новым стандартом C++20.
# Комментарий
a = 1 # Комментарий
''' Это тоже комментарий
b = c
c = d
'''
# динамическая типизация переменных
# = копирование значения справа налево
i = 1 # целое число (int)
f = 2.1 # число с плавающей запятой (float)
s = "a" # строковый тип (string)
b = True # логический тип (boolean)
l = [0,1,2] # массив,список (array)
t = (0,1,2) # кортеж (tuple)
d = {"a":0, "b":1} # словарь, ассоциативный массив
print(i,f,s,b,l,t,d)
# 1 2.1 a True [0, 1, 2] (0, 1, 2) {'a': 0, 'b': 1}
# Когда хотим определить тип, используем type
print(type(i)) # Вывод <class 'int'>
# Переменная не сохраняет, а содержит фактическое значение
# Это, своего рода, переменная-ссылка, указывающая на местоположение значения
# Можно получить идентификатор актуального значения через id
print(id(l)) # 00000000000000 (меняется от исполнения к исполнениюц)
l2 = l # Приведу в пример копию массива, где ссылаюсь на 2 его элемента, а фактический массив - 1.
print(id(l2)) # 00000000000000 (то же значение, что у вышеуказанного id(l))
# Поскольку существует только один фактический массив, кажется, что он был добавлен в массив l, даже если вы добавили элемент со ссылкой на l2.
l2.append(1)
Для написания эффективных и корректных многопоточных приложений очень важно знать какие существуют механизмы синхронизации памяти между потоками исполнения, какие гарантии предоставляют элементы многопоточного программирования, такие как мьютекс, join потока и другие. Особенно это касается модели памяти C++, которая была создана сложной таковой, чтобы обеспечивать оптимальный многопоточный код под множество архитектур процессоров. Кстати, язык программирования Rust, будучи построенным на LLVM, использует модель памяти такую же, как в C++. Поэтому материал в этой статье будет полезен программистам на обоих языках. Но все примеры будут на языке C++. Я буду рассказывать про std::atomic, std::memory_order и на каких трех слонах стоят атомики.