Pull to refresh
56
0
Anton Razzhigaev @Razant

Автор телеграм канала https://t.me/abstractDL

Send message

DeepSeek-R1 для чайников

Level of difficultyHard
Reading time9 min
Views59K

В последние месяцы всё чаще слышим про «reasoning-модели», способные не просто продолжать текст, а действительно шаг за шагом решать сложнейшие задачи цепочкой рассуждений (chain-of-thought). Впервые такой подход эффектно показали в OpenAI o1, но, к сожалению, подробности там остаются секретными. Недавно же команда DeepSeek наделала шуму с открытыми вариантами R1 и R1-Zero, созданными поверх их собственной большой MoE-модели DeepSeek-V3. В этом посте я не стану углубляться в вопрос «чья модель лучше — o1 или R1». Зато разберу, какие главные технические детали стоят за R1, почему Zero-версия выглядит особо захватывающе, и как именно авторам удалось обучить модель мыслить.

Читать далее

Большие языковые модели гораздо линейнее, чем мы думали

Level of difficultyHard
Reading time4 min
Views19K

Хабр, привет! Это снова Антон Разжигаев, аспирант Сколтеха и научный сотрудник лаборатории Fusion Brain в Институте AIRI, где мы продолжаем углубляться в изучение языковых моделей. В прошлый раз мы выяснили, что эмбеддинги трансформеров-декодеров сильно анизотропны. На этот раз я бы хотел рассказать об их удивительной линейности, ведь нашу статью про обнаруженный эффект («Your Transformer is Secretly Linear») несколько дней назад приняли на международную конференцию ACL!

Читать далее

Как устроено пространство, в котором думают языковые модели?

Level of difficultyHard
Reading time5 min
Views20K

С момента выхода первой статьи «Attention is All You Need» я с жадностью и любопытством, присущими любому исследователю, пытаюсь углубиться во все особенности и свойства моделей на базе архитектуры трансформер. Но, если честно, я до сих пор не понимаю, как они работают и почему так хорошо обучаются. Очень хочу разобраться, в чём же причина такой эффективности этих моделей, и есть ли предел их возможностей?

Такому изучению трансформеров «под микроскопом» и посвящена наша научная работа, только что представленная на конференции EACL 2024, которая проходила на Мальте — «The Shape of Learning: Anisotropy and Intrinsic Dimensions in Transformer-Based Models». В этой работе мы сфокусировались на наблюдении за пространством эмбеддингов (активаций) на промежуточных слоях по мере обучения больших и маленьких языковых моделей (LM).

Читать далее

OmniFusion: выходим за границы текста

Level of difficultyHard
Reading time5 min
Views6.5K

Кто-то ещё сомневается, что в мире машинного обучения происходит революция? Уверен, мы являемся свидетелями преобразования привычного взаимодействия с данными, поиска информации, да и вообще работы как таковой. Ведь умные ассистенты (ChatGPT, GigaChat, Bard) готовы взять на себя даже самые сложные задачи.

Но не всегда возможно сформулировать проблему в виде текстового запроса, иногда требуется информация из других “модальностей” — картинка, звук, 3D и тд. Ниже я разберу какие именно есть способы соединения больших языковых моделей (LLM) с дополнительными форматами данных, а также опишу как устроена наша новая модель OmniFusion.

Читать далее

ChatGPT плохо отвечает на «простые вопросы». Как это починить?

Level of difficultyMedium
Reading time5 min
Views11K

В этой статье я расскажу о нашей последней работе — Multilingual Triple Match — системе для поиска ответов на фактологические вопросы, которая по своей точности обходит даже ChatGPT.

Читать далее

Kandinsky 2.0 — первая мультиязычная диффузия для генерации изображений по тексту

Reading time7 min
Views48K

Диффузия всё увереннее вытесняет GANы и авторегрессионные модели в ряде задач цифровой обработки изображений. Это не удивительно, ведь диффузия обучается проще, не требует сложного подбора гиперпараметров, min-max оптимизации и не страдает нестабильностью обучения. А главное, диффузионные модели демонстрируют state-of-the-art результаты почти на всех генеративных задачах — генерации картинок по тексту, генерация звуков, видео и даже 3D!

К сожалению, большинство работ в области text-to-something сосредоточены только на английском и китайском языках. Чтобы исправить эту несправедливость, мы решили создать мультиязычную text-to-image диффузионную модель Kandinsky 2.0, которая понимает запросы более чем на 100 языках! И главное, на русском ;) Подробности — под катом.

Читать далее

GPT для чайников: от токенизации до файнтюнинга

Reading time13 min
Views121K

К моему удивлению, в открытом доступе оказалось не так уж много подробных и понятных объяснений того как работает модель GPT от OpenAI. Поэтому я решил всё взять в свои руки и написать этот туториал.

Читать далее

Information

Rating
Does not participate
Registered
Activity