Как известно, в современных архитектурах x86(_64) и ARM виртуальная память процесса линейна и непрерывна, ибо, к счастью, прошли времена
char near*
и
int huge*
. Виртуальная память поделена на страницы, типичный размер которых 4 KiB, и по умолчанию они не отображены на физическую память (mapping), так что работать с ними не получится. Чтобы посмотреть текущие отображённые интервалы адресов у процесса, в Linux смотрим /proc/<pid>/maps, в OS X vmmap <pid>. У каждого интервала адресов есть три вида защиты: от исполнения, от записи и от чтения. Как видно, самый первый интервал, начинающийся с load address (соответствующий сегменту .text у
ELF в Linux, __TEXT у
Mach-O в OS X), доступен на чтение и исполнение — очень логично. Ещё можно увидеть, что стек по сути ничем не отличается от других интервалов, и можно быстро вычислить его размер, вычтя из конечного адреса начальный. Отображение страниц выполняется с помощью
mmap/munmap, а защита меняется с помощью
mprotect. Ещё существуют
brk/sbrk, deprecated древние пережитки прошлого, которые изменяют размер одного-единственного интервала «данных» и в современных системах эмулируются mmap’ом.
Все POSIX-реализации malloc так или иначе упираются в перечисленные выше функции. По сравнению с наивным выделением и освобождением страниц, округляя необходимый размер в большую сторону, malloc имеет много преимуществ:
- оптимально управляет уже выделенной памятью;
- значительно уменьшает количество обращений к ядру (ведь mmap / sbrk — это syscall);
- вообще абстрагирует программиста от виртуальной памяти, так что многие пользуются malloc’ом, вообще не подозревая о существовании страниц, таблиц трансляции и т. п.
Довольно теории! Будем щупать malloc на практике. Проведём три эксперимента. Работа будет возможна на POSIX-совместимых операционках, в частности была проверена работа на Linux и на OS X.