Для примера рассмотрим задачу предсказания цены на трубы размещенную на платформе для соревнований Kaggle. Описание и данные можно найти здесь. На самом деле на практике очень часто встречаются задачи в которых надо быстро сделать прототип имея очень небольшое количество данных, а то и вообще не имея реальных данных до момента первого внедрения. В этих случаях приходится подходить к задаче творчески, начинать с несложных эвристик и ценить каждый запрос или размеченный объект. Но в нашей модельной ситуации таких проблем, к счастью, нет и поэтому мы можем сразу начать с обзора данных, определения задачи и попыток применения алгоритмов.
Как быстро написать и выкатить в продакшн алгоритм машинного обучения
Для примера рассмотрим задачу предсказания цены на трубы размещенную на платформе для соревнований Kaggle. Описание и данные можно найти здесь. На самом деле на практике очень часто встречаются задачи в которых надо быстро сделать прототип имея очень небольшое количество данных, а то и вообще не имея реальных данных до момента первого внедрения. В этих случаях приходится подходить к задаче творчески, начинать с несложных эвристик и ценить каждый запрос или размеченный объект. Но в нашей модельной ситуации таких проблем, к счастью, нет и поэтому мы можем сразу начать с обзора данных, определения задачи и попыток применения алгоритмов.