Pull to refresh
8
0

DevOps Engineer

Send message

Квантовый чип Willow от Google: много маркетинга и мало правды

Reading time3 min
Views16K

СМИ взорвали новости о появлении самого быстрого компьютера в мире. Он за 5 минут смог решить задачу, которую классический ПК решал бы миллиард лет. Давайте посмотрим на чём эти и другие громкие заявления основаны и есть ли на данный момент хоть какие-то подтверждения прорыва в этом амбициозном очень-очень дорогом проекте.

Спойлер: нет.

Читать далее

Transformer в картинках

Reading time14 min
Views161K

В прошлой статье мы рассматривали механизм внимания (attention) – чрезвычайно распространенный метод в современных моделях глубокого обучения, позволяющий улучшить показатели эффективности приложений нейронного машинного перевода. В данной статье мы рассмотрим Трансформер (Transformer) – модель, которая использует механизм внимания для повышения скорости обучения. Более того, для ряда задач Трансформеры превосходят модель нейронного машинного перевода от Google. Однако самое большое преимущество Трансформеров заключается в их высокой эффективности в условиях параллелизации (parallelization). Даже Google Cloud рекомендует использовать Трансформер в качестве модели при работе на Cloud TPU. Попробуем разобраться, из чего состоит модель и какие функции выполняет.


Впервые модель Трансформера была предложена в статье Attention is All You Need. Реализация на TensorFlow доступна как часть пакета Tensor2Tensor, кроме того, группа NLP-исследователей из Гарварда создали гид-аннотацию статьи с реализацией на PyTorch. В данном же руководстве мы попробуем максимально просто и последовательно изложить основные идеи и понятия, что, надеемся, поможет людям, не обладающим глубоким знанием предметной области, понять данную модель.

Читать дальше →

Что мы действительно (не)знаем о наличии сознания у сверхбольших нейросетей?

Reading time28 min
Views55K
image

В последнее время чаще стали появляется новости о том, что тот или иной эксперт в области ИИ заявил про появление у машины сознания. То Илья Суцкевер, директор по науке в OpenAI напишет о том, что «может быть, сегодняшние большие нейронные сети немножко обладают сознанием». А то и вовсе инженер Гугла Леймон Блейк найдет у искусственного интеллекта LaMDA разум и сознание и выложит в доказательство диалоги с ним. Резонанс последнего эпизода вообще большой — после объявления о том, что Блека отстранили от работы, а он в свою очередь собирается нанять для ИИ адвоката, разные конспирологические версии появились даже в комментариях на Хабре. Ну и чего бы им не появиться, если реально серьезный разбор вопроса о «сознании» нейросети с технической точки зрения найти трудно. Кроме того, что «комиссия по этике Гугл рассмотрела вопрос и решила, что ИИ не обладает сознанием», да еще ряда давно известных общефилософских размышлений ничего особо и нет. Поэтому, как человек потративший по роду работы более сотни часов своей жизни на общение с моделями такого рода и поиску в них проблем, я решил, что будет полезно восполнить пробел более подробным обзором вопроса. Завесу мистической тайны сознания нейросетей приподнимаем под катом )
Читать дальше →

О «раздутом пузыре» нейросетей

Level of difficultyMedium
Reading time8 min
Views102K

На днях я наткнулся на одно любопытное видео.

Моей первой реакцией было Братан, хорош, давай, давай, вперёд! Контент в кайф, можно ещё? Вообще красавчик! Можно вот этого вот почаще? отрицание и усталость, потому что всё это я уже слышу на протяжении лет пяти с разной интенсивностью в зависимости от текущих объектов хайпа. В этом посте я попытаюсь разобраться, что из сказанного в видео является правдой.

Утверждения:

1. Закон Мура больше не выполняется из-за фундаментальных физических ограничений ⇒ масштабирование нейросетевых моделей по вычислительному бюджету невозможно.

2. Нейросетевые модели внедряются слишком медленно.

3. Ответы нейросетевых моделей неконтролируемы и неинтерпретируемы.

Дальше обсудим каждое из них.

Читать далее

Яндекс выложил YaLM 100B — сейчас это крупнейшая GPT-подобная нейросеть в свободном доступе. Вот как удалось её обучить

Reading time10 min
Views124K

Больше примеров — в конце поста

В последние годы большие языковые модели на архитектуре трансформеров стали вершиной развития нейросетей в задачах NLP. С каждым месяцем они становятся всё больше и сложнее. Чтобы обучить подобные модели, уже сейчас требуются миллионы долларов, лучшие специалисты и годы разработки. В результате доступ к современным технологиям остался лишь у крупнейших IT-компаний. При этом у исследователей и разработчиков со всего мира есть потребность в доступе к таким решениям. Без новых исследований развитие технологий неизбежно снизит темпы. Единственный способ избежать этого — делиться с сообществом своими наработками.

Год назад мы впервые рассказали Хабру о семействе языковых моделей YaLM и их применении в Алисе и Поиске. Сегодня мы выложили в свободный доступ нашу самую большую модель YaLM на 100 млрд параметров. Она обучалась 65 дней на 1,7 ТБ текстов из интернета, книг и множества других источников с помощью 800 видеокарт A100. Модель и дополнительные материалы опубликованы на Гитхабе под лицензией Apache 2.0, которая допускает применение как в исследовательских, так и в коммерческих проектах. Сейчас это самая большая в мире GPT-подобная нейросеть в свободном доступе как для английского, так и для русского языков.

В этой статье мы поделимся не только моделью, но и нашим опытом её обучения. Может показаться, что если у вас уже есть суперкомпьютер, то с обучением больших моделей никаких проблем не возникнет. К сожалению, это заблуждение. Под катом мы расскажем о том, как смогли обучить языковую модель такого размера. Вы узнаете, как удалось добиться стабильности обучения и при этом ускорить его в два раза. Кстати, многое из того, что будет описано ниже, может быть полезно при обучении нейросетей любого размера.
Читать дальше →

Что делает ChatGPT… и почему это работает?

Level of difficultyMedium
Reading time75 min
Views174K

То, что ChatGPT может автоматически генерировать что-то, что хотя бы на первый взгляд похоже на написанный человеком текст, удивительно и неожиданно. Но как он это делает? И почему это работает? Цель этой статьи - дать приблизительное описание того, что происходит внутри ChatGPT, а затем исследовать, почему он может так хорошо справляться с созданием более-менее осмысленного текста. С самого начала я должен сказать, что собираюсь сосредоточиться на общей картине происходящего, и хотя я упомяну некоторые инженерные детали, но не буду глубоко в них вникать. (Примеры в статье применимы как к другим современным "большим языковым моделям" (LLM), так и к ChatGPT).

Читать далее

GPT-4: Чему научилась новая нейросеть, и почему это немного жутковато

Level of difficultyEasy
Reading time23 min
Views277K

В этой статье мы разберем новые удивительные способности последней языковой модели из семейства GPT (от понимания мемов до программирования), немного покопаемся у нее под капотом, а также попробуем понять – насколько близко искусственный интеллект подошел к черте его безопасного применения?

Поехали →

Человечество против искусственного интеллекта: может ли развитие нейросетей привести к катастрофе

Level of difficultyEasy
Reading time21 min
Views64K

История про «восстание машин» давно знакома всем любителям научной фантастики, но после взрывного роста возможностей нейросетевых языковых моделей (вроде ChatGPT) об этом риске заговорили и вполне серьезные исследователи. В этой статье мы попробуем разобраться – есть ли основания у таких опасений, или это всего лишь бред воспаленной кукухи?

Читать далее

ChatGPT как инструмент для поиска: решаем основную проблему

Reading time40 min
Views132K

Вышедшая чуть больше месяца назад ChatGPT уже успела нашуметь: школьникам в Нью-Йорке запрещают использовать нейросеть в качестве помощника, её же ответы теперь не принимаются на StackOverflow, а Microsoft планирует интеграцию в поисковик Bing - чем, кстати, безумно обеспокоен СЕО Alphabet (Google) Сундар Пичаи. Настолько обеспокоен, что в своём письме-обращении к сотрудникам объявляет "Code Red" ситуацию. В то же время Сэм Альтман, CEO OpenAI - компании, разработавшей эту модель - заявляет, что полагаться на ответы ChatGPT пока не стоит.

Насколько мы действительно близки к внедрению продвинутых чат-ботов в поисковые системы, как может выглядеть новый интерфейс взаимодействия, и какие основные проблемы есть на пути интеграции? Могут ли модели сёрфить интернет бок о бок с традиционными поисковиками? На эти и многие другие вопросы постараемся ответить под катом.

Погрузиться с головой →

GPT-like модель «впервые сделала научное открытие»: что, как, и куда дальше?

Level of difficultyMedium
Reading time21 min
Views117K

14го декабря в одном из самых авторитетных общенаучных журналов Nature была опубликована статья с, кажется, сенсационным заголовком: «ИИ-модели Google DeepMind превосходят математиков в решении нерешённых проблем». А в блогпосте дочки гугла и вовсе не постеснялся указать, что это — первые находки Больших Языковых Моделей (LLM) в открытых математических проблемах. Неужели правда? Или кликбейт — и это в Nature? А может мы и вправду достигли техносингулярности, где машины двигают прогресс? Что ж, давайте во всём разбираться!

Ну давай разберёмся →

Как работает ChatGPT: объясняем на простом русском эволюцию языковых моделей с T9 до чуда

Level of difficultyEasy
Reading time30 min
Views527K

В последнее время нам почти каждый день рассказывают в новостях, какие очередные вершины покорили языковые нейросетки, и почему они уже через месяц совершенно точно оставят лично вас без работы. При этом мало кто понимает — а как вообще нейросети вроде ChatGPT работают внутри? Так вот, устраивайтесь поудобнее: в этой статье мы наконец объясним всё так, чтобы понял даже шестилетний гуманитарий!

Погнали →

От промптов к дообучению: четыре уровня адаптации open-source моделей

Reading time12 min
Views6.9K

Привет, Хабр! Меня зовут Анна Щеникова, я аналитик в Центре RnD в МТС Диджитал. Ко мне часто приходят задачи, где нужно использовать open-source LLM. Сразу же встает вопрос: а как адаптировать имеющуюся модель под конкретный кейс?

Мы выделяем четыре уровня адаптации. Для этого смотрим, какие потребуются навыки для решения этой задачи, сколько времени и человекочасов займет разработка. Поняв требуемый уровень, мы можем поставить себе дедлайны на проверку гипотезы и запланировать действия, если задача не решится выбранным способом. Ниже я расскажу, как мы разделяем разные уровни адаптации, что делаем на каждом из них и когда переходим на следующий.

Читать далее

Шпаргалка для создания идеального промпта LLM

Level of difficultyEasy
Reading time10 min
Views33K

Большие языковые модели могут производить любую последовательность символов на каком угодно языке в любом формате данных (включая языки программирования, аудио и видео). Соответственно и качество этой последовательности может быть самым разным. Иногда мы получаем многословные запутанные объяснения с галлюцинациями и устаревшими знаниями, а иногда ― элегантную функцию на Python решающую сложную задачу,  идеальное название для бренда, а скоро и первую серию будущего бестселлера. Более того, модель может надёжно и точно ответить на миллионы вопросов ваших клиентов, сопоставить запросы из сотен позиций с многотысячным каталогом, самостоятельно обработать заявки по страховым искам, обучить робота или перебрать новые патентные заявки в поисках конфликтов со старыми. Однако чтобы полностью реализовать потенциал LLM, необходимо научиться мастерски давать им подсказки. А как это делать, я расскажу в этой статье.

Читать далее

Промпт-инжиниринг: как найти общий язык с ИИ

Level of difficultyEasy
Reading time10 min
Views10K

В последние годы мир информационных технологий переживает настоящую революцию, связанную с развитием искусственного интеллекта (ИИ). Одной из наиболее захватывающих и новых профессий в этой области становится промпт‑инжиниринг. Меня зовут Наталья Бруй, я руководитель группы промпт‑инженеров MTS AI. В этой статье я расскажу почему эта профессия приобретает всё большую значимость и как можно использовать приёмы промпт‑инжиниринга в работе и повседневной жизни.

Читать далее

Как (быстро) сделать русский локальный ChatGPT

Level of difficultyMedium
Reading time7 min
Views51K

Эта история началась в начале марта этого года. ChatGPT тогда был в самом расцвете. Мне в Telegram пришёл Саша Кукушкин, с которым мы знакомы довольно давно. Спросил, не занимаемся ли мы с Сашей Николичем языковыми моделями для русского языка, и как можно нам помочь.

И так вышло, что мы действительно занимались, я пытался собрать набор данных для обучения нормальной базовой модели, rulm, а Саша экспериментировал с существующими русскими базовыми моделями и кустарными инструктивными наборами данных.

После этого мы какое-то время продолжали какое-то время делать всё то же самое. Я потихоньку по инерции расширял rulm новыми наборами данных. Посчитав, что обучить базовую модель нам в ближайшее время не светит, мы решили сосредоточиться на дообучении на инструкциях и почти начали конвертировать то, что есть, в формат инструкций по аналогии с Flan. И тут меня угораздило внимательно перечитать статью.

Читать далее

Большие и чёрные (ящики): что мы знаем о том, как «думают» нейросети?

Level of difficultyMedium
Reading time30 min
Views72K

ChatGPT вышел уже почти два года назад, а датасаентисты до сих пор никак не могут определиться — являются ли нейросети тварями дрожащими, или всё же мыслить умеют? В этой статье мы попробуем разобраться: а как вообще учёные пытаются подойти к этому вопросу, насколько вероятен здесь успех, и что всё это означает для всех нас как для человечества.

Узнать →

о1: почему новая GPT от OpenAI — это не хайп, а переход к новой парадигме в ИИ

Level of difficultyEasy
Reading time27 min
Views120K

Последние пару лет развитие языковых нейросетей как будто бы шло по принципу «больше, длиннее, жирнее»: разработчики пытались раздуть свои модели на как можно большее число параметров и прогнать через них максимальный объем тренировочных данных. 12 сентября OpenAI выпустили новую LLM, которая добавляет в это уравнение еще одно измерение для прокачки: теперь можно масштабировать объем «мыслей», который модель будет тратить в процессе своей работы. В этой статье мы разберемся, чему научилась новая GPT o1, и как это повлияет на дальнейшую эволюцию ИИ.

Давайте выясним →

Что не так с ИИ-юристами

Level of difficultyEasy
Reading time14 min
Views17K

Я работаю юристом и преподавателем. За последние полтора года я провел много времени, общаясь с большими языковыми моделями — в первую очередь с GPT и GigaChat. С их помощью я решал самые разные профессиональные задачи; что-то получалось удивительно хорошо, что-то до смешного плохо. Однако в среднем — пока — ни одна из моделей, которыми я пользовался, не способна работать в «автономном» режиме, давая надежные юридические консультации неюристам. Максимум, к которому модели готовы — это работа copilot, «второго пилота», выполняющего базовые задачи по поручению и под контролем человека-специалиста.

Почему так?

Что не так со статьей про ИИ-юристов от Романа Янковского?

Reading time5 min
Views2K

В недавней статье Роман Янковский высказал интересные мысли о влиянии ИИ на юриспруденцию. Статья Романа под названием «Что не так с ИИ-юристами» имела как сторонников, так и несогласных.

Я решил написать ответ на статью, где постараюсь развить некоторые из поднятых Романом вопросов и пригласить юридическое и IT сообщества к обсуждению прикладной пользы LLM.

Дискуссии об ИИ часто сопровождаются антропоморфизацией, приписыванием ему человеческих качеств – от божественных (или чудесных, что обязано сделать жизнь человека лучше и счастливее) до демонических (он нас поработит). Это мешает объективной оценке его возможностей и рисков.

Вместо того, чтобы анализировать каждый конкретный тезис исходной статьи о возможностях и опасностях ИИ, предлагаю сфокусироваться на самом определении искусственного интеллекта. Существует стойкое ощущение, что определение ИИ, на которых базируются многие рассуждения – часто недостаточно верны, и обсуждение вытекающих из него тезисов может оказаться неконструктивным.

В контексте данной статьи под ИИ, а точнее, под большими языковыми моделями (LLM), мы будем понимать системы, обученные на огромном корпусе документов. Они содержат в себе знание о вероятности того следования слов друг за другом, и на основе этого могут подставлять их наиболее вероятном порядке. Это упрощенное объяснение, внутри LLM более сложная математика, но на выходе примерно так это и работает.

Следовательно, нужно обсуждать, как использовать и кого заменит именно такой инструмент в юридической сфере?

Читать далее

Information

Rating
Does not participate
Location
Dornbirn, Vorarlberg, Австрия
Registered
Activity