Search
Write a publication
Pull to refresh
48
0
Илья Захаркин @izakharkin

Computer Vision & Graphics RnD

Send message

Как писать на ассемблере в 2018 году

Reading time13 min
Views323K


Статья посвящена языку ассемблер с учетом актуальных реалий. Представлены преимущества и отличия от ЯВУ, произведено небольшое сравнение компиляторов, скрупулёзно собрано значительное количество лучшей тематической литературы.
Читать дальше →

Стилизация изображений с помощью нейронных сетей: никакой мистики, просто матан

Reading time14 min
Views92K

Приветствую тебя, Хабр! Наверняка вы заметили, что тема стилизации фотографий под различные художественные стили активно обсуждается в этих ваших интернетах. Читая все эти популярные статьи, вы можете подумать, что под капотом этих приложений творится магия, и нейронная сеть действительно фантазирует и перерисовывает изображение с нуля. Так уж получилось, что наша команда столкнулась с подобной задачей: в рамках внутрикорпоративного хакатона мы сделали стилизацию видео, т.к. приложение для фоточек уже было. В этом посте мы с вами разберемся, как это сеть "перерисовывает" изображения, и разберем статьи, благодаря которым это стало возможно. Рекомендую ознакомиться с прошлым постом перед прочтением этого материала и вообще с основами сверточных нейронных сетей. Вас ждет немного формул, немного кода (примеры я буду приводить на Theano и Lasagne), а также много картинок. Этот пост построен в хронологическом порядке появления статей и, соответственно, самих идей. Иногда я буду его разбавлять нашим недавним опытом. Вот вам мальчик из ада для привлечения внимания.


Читать дальше →

ИИ учит язык: зачем нужен хакатон по машинному переводу

Reading time8 min
Views4.5K
image

18 декабря стартовал отборочный тур для участия в хакатоне DeepHack.Babel от Лаборатории нейронных систем и глубокого обучения МФТИ. Акцент будет сделан на нейросетевой машинный перевод, набирающий популярность в исследовательском сообществе и уже использующийся в коммерческих продуктах. Причем обучить систему машинного перевода нужно будет, вопреки общепринятой практике, на непараллельных данных — то есть, в терминах машинного обучения, без привлечения учителя. Если вы еще размышляете над регистрацией, рассказываем, зачем это нужно.
Читать дальше →

Как сделать внутренний продукт внешним. Опыт команды Яндекс.Трекера

Reading time8 min
Views39K

Недавно мы открыли для внешних пользователей Яндекс.Трекер – нашу систему управления задачами и процессами. В Яндексе его используют не только для создания сервисов, но даже для закупки печенья на кухни.


Как известно, чем меньше компания, тем более простые инструменты она может использовать. Если с утра вы можете поздороваться с каждым сотрудником лично, то вам хватит для работы даже чата в Telegram. Когда появляются отдельные команды, не только поприветствовать каждого лично не получится, но и в статусах задач можно запутаться.



Облако из слов в заголовках тикетов во внутреннем Яндекс.Трекере


На таком этапе важно сохранять прозрачность процессов: все стороны должны иметь возможность в любой момент узнать о ходе работы над задачей или, например, оставить свой комментарий, который не пропадёт в потоке рабочего чата. Для небольших команд трекер – это и вовсе своего рода новостная лента с последними новостями из жизни их компании.


Сегодня мы расскажем читателям Хабрахабра, почему Яндекс решил создать свой трекер, как он устроен внутри, и с какими сложностями нам пришлось столкнуться, открывая его наружу.

Как и для чего Яндекс отключает собственные дата-центры

Reading time7 min
Views111K
Раз в неделю Яндекс отключает один из своих дата-центров. Мы называем это учениями. Что это такое? Как возникло? Зачем мы это делаем? А не диверсия ли это? Насколько это опасно? На эти вопросы мне регулярно приходится отвечать как внутри, так и снаружи компании. Сегодня я решила прояснить все эти вопросы разом.



Сейчас у нас несколько собственных дата-центров, в которых располагается несколько десятков тысяч серверов и сетевое оборудование. Учения — это моделирование реальной жизненной ситуации, при которой мы теряем или весь дата-центр или его часть.

Для начала предлагаю обратиться к истории и попытаться понять, как мы пришли к такому решению. Все привыкли к тому, что наши сервисы работают всегда, без перерывов на обед и профилактику. Серьезные сбои происходят настолько редко, что каждый из них становится заметным событием.
Читать дальше →

Открытый курс машинного обучения. Тема 10. Градиентный бустинг

Reading time18 min
Views318K

Всем привет! Настало время пополнить наш с вами алгоритмический арсенал.


Сегодня мы основательно разберем один из наиболее популярных и применяемых на практике алгоритмов машинного обучения — градиентный бустинг. О том, откуда у бустинга растут корни и что на самом деле творится под капотом алгоритма — в нашем красочном путешествии в мир бустинга под катом.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →

Как сделать проект по распознаванию рукописных цифр с дообучением онлайн. Гайд для не совсем начинающих

Reading time57 min
Views35K
Привет, Хабр! В последнее время машинное обучение и data science в целом приобретают все большую популярность. Постоянно появляются новые библиотеки и для тренировки моделей машинного обучения может потребоваться совсем немного кода. В такой ситуации можно забыть, что машинное обучение — не самоцель, а инструмент для решения какой-либо задачи. Мало сделать работающую модель, не менее важно качественно презентовать результаты анализа или сделать работающий продукт.

Я хотел бы рассказать о том, как создал проект по распознаванию рукописного ввода цифр с моделями, которые дообучаются на нарисованных пользователями цифрах. Используется две модели: простая нейронная сеть (FNN) на чистом numpy и сверточная сеть (CNN) на Tensorflow. Вы сможете узнать, как сделать практически с нуля следующее:

  • создать простой сайт с использованием Flask и Bootstrap;
  • разместить его на платформе Heroku;
  • реализовать сохранение и загрузку данных с помощью облака Amazon s3;
  • собрать собственный датасет;
  • натренировать модели машинного обучения (FNN и CNN);
  • сделать возможность дообучения этих моделей;
  • сделать сайт, который сможет распознавать нарисованные изображения;

Для полного понимания проекта желательно знать как работает deep learning для распознавания изображений, иметь базовые знания о Flask и немного разбираться в HTML, JS и CSS.
Читать дальше →

Переводчик с языка жестов: реализация метода опорных векторов на Intel Edison

Reading time5 min
Views8.8K
В мире живёт 30 миллионов человек, имеющих проблемы с речью. Для того, чтобы общаться с окружающими, они пользуются языком жестов. А что, если собеседник такого языка не понимает? Как преодолеть языковой барьер? Наш сегодняшний рассказ посвящён проекту распознавания жестов. Плата Intel Edison принимает сведения от датчиков, закреплённых на специальной перчатке, обрабатывает их с использованием метода опорных векторов, узнаёт, какой букве соответствует жест, и отправляет то, что получилось, Android-приложению для озвучивания.


Intel Edison и перчатка с датчиками: основа системы распознавания языка жестов
Читать дальше →

Алгоритм Джонкера-Волгенанта + t-SNE = супер-сила

Reading time9 min
Views32K
До:



После:



Заинтригованы? Но обо всем по порядку.

t-SNE


t-SNE — это очень популярный алгоритм, который позволяет снижать размерность ваших данных, чтобы их было проще визуализировать. Этот алгоритм может свернуть сотни измерений к всего двум, сохраняя при этом важные отношения между данными: чем ближе объекты располагаются в исходном пространстве, тем меньше расстояние между этими объектами в пространстве сокращенной размерности. t-SNE неплохо работает на маленьких и средних реальных наборах данных и не требует большого количества настроек гиперпараметров. Другими словами, если взять 100 000 точек и пропустить их через эту волшебный черный ящик, на выходе мы получим красивый график рассеяния.
Читать дальше →

Как заставить работать бинарный классификатор чуточку лучше

Reading time6 min
Views48K
Disclaimer: пост написан по мотивам данного. Я подозреваю, что большинство читателей прекрасно знает, как работает Наивный Байесовский классификатор, поэтому предлагаю лишь мельком хотя бы глянуть на то, о чём там говорится, перед тем как переходить под кат.

Решение задач с помощью алгоритмов машинного обучения давно и прочно вошло в нашу жизнь. Это произошло по всем понятным и объективным причинам: дешевле, проще, быстрее, чем явно кодить алгоритм решения каждой отдельной задачи. До нас, обычно, доходят «черные ящики» классификаторов (вряд ли тот же ВК предложит вам свой корпус размеченных имен), что не позволяет ими управлять в полной мере.
Здесь я бы хотел рассказать о том, как попробовать добиться «лучших» результатов работы бинарного классификатора, о том какие характеристики бинарный классификатор имеет, как их измерять, и как определить, что результат работы стал «лучше».
Читать дальше →

Наивный Байесовский классификатор в 25 строк кода

Reading time3 min
Views90K
Наивный Байесовский классификатор один из самых простых из алгоритмов классификации. Тем не менее, очень часто он работает не хуже, а то и лучше более сложных алгоритмов. Здесь я хочу поделиться кодом и описанием того, как это все работает.

И так, для примера возьму задачу определения пола по имени. Конечно, чтобы определить пол можно создать большой список имен с метками пола. Но этот список в любом случае будет неполон. Для того чтобы решить эту проблему, можно «натренировать» модель по маркированным именам.
Если интересует, прошу
под кат

Автоэнкодеры в Keras, Часть 1: Введение

Reading time11 min
Views98K

Содержание



Во время погружения в Deep Learning зацепила меня тема автоэнкодеров, особенно с точки зрения генерации новых объектов. Стремясь улучшить качество генерации, читал различные блоги и литературу на тему генеративных подходов. В результате набравшийся опыт решил облечь в небольшую серию статей, в которой постарался кратко и с примерами описать все те проблемные места с которыми сталкивался сам, заодно вводя в синтаксис Keras.

Автоэнкодеры


Автоэнкодеры — это нейронные сети прямого распространения, которые восстанавливают входной сигнал на выходе. Внутри у них имеется скрытый слой, который представляет собой код, описывающий модель. Автоэнкодеры конструируются таким образом, чтобы не иметь возможность точно скопировать вход на выходе. Обычно их ограничивают в размерности кода (он меньше, чем размерность сигнала) или штрафуют за активации в коде. Входной сигнал восстанавливается с ошибками из-за потерь при кодировании, но, чтобы их минимизировать, сеть вынуждена учиться отбирать наиболее важные признаки.



Кому интересно, добро пожаловать под кат
Читать дальше →

Эффективное использование Github

Reading time13 min
Views127K

Github — важная часть жизни современного разработчика: он стал стандартом для размещения opensource-проектов. В «2ГИС» мы используем гитхаб для разработки проектов web-отдела и хостинга проектов с открытым кодом.

Хотя большинство из нас пользуются сервисом практически каждый день, не все знают, что у него есть много фишек, помогающих облегчить работу или рутинные операции. Например, получение публичного ключа из URL; отслеживание того, с каких сайтов пользователи приходят в репозиторий; правильный шаринг ссылок на файлы, которые живут в репозиториях гитхаба; горячие клавиши и тому подобное. Цель этой статьи — рассказать о неочевидных вещах и вообще о том, что сделает вашу работу с гитхабом продуктивнее и веселее (я не буду рассматривать здесь работу с API гитхаба, так как эта тема заслуживает отдельной статьи).


Содержание



Читать дальше →

15 тривиальных фактов о правильной работе с протоколом HTTP

Reading time7 min
Views241K
Внимание! Реклама! Пост оплачен Капитаном Очевидность!

Ниже под катом вы найдёте 15 пунктов, описывающих правильную организацию ресурсов, доступных по протоколу HTTP — веб-сайтов, «ручек» бэкенда, API и прочая. «Правильный» здесь означает «соответствующий рекомендациям и спецификациям». Большая часть ниженаписанного почти дословно переведена из официальных стандартов, рекомендаций и best practices от IETF и W3C.



Вы не найдёте здесь абсолютно ничего неочевидного. Нет, серьёзно, каждый веб-разработчик теоретически эти 15 пунктов должен освоить где-то в районе junior developer-а и/или второго-третьего курса университета.

Однако на практике оказывается, что великое множество веб-разработчиков эти азы таки не усвоило. Читаешь документацию к иным API и рыдаешь. Уверен, что каждый читатель таки найдёт в этом списке что-то новое для себя.
Читать дальше →

Открытый курс машинного обучения. Тема 8. Обучение на гигабайтах с Vowpal Wabbit

Reading time26 min
Views130K

Всем привет!



Вот мы постепенно и дошли до продвинутых методов машинного обучения. Сегодня обсудим, как вообще подступиться к обучению модели, если данных гигабайты или десятки гигабайт. Обсудим приемы, позволяющие это делать: стохастический градиентный спуск (SGD) и хэширование признаков, посмотрим на примеры применения библиотеки Vowpal Wabbit.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →

Открытый курс машинного обучения. Тема 7. Обучение без учителя: PCA и кластеризация

Reading time19 min
Views212K

Привет всем! Приглашаем изучить седьмую тему нашего открытого курса машинного обучения!


Данное занятие мы посвятим методам обучения без учителя (unsupervised learning), в частности методу главных компонент (PCA — principal component analysis) и кластеризации. Вы узнаете, зачем снижать размерность в данных, как это делать и какие есть способы группирования схожих наблюдений в данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →

Нормализация отношений. Шесть нормальных форм

Reading time8 min
Views1.6M
В данной теме я затрону 6 нормальных форм и методы приведения таблиц в эти формы.

Процесс проектирования БД с использование метода НФ является итерационным и заключается в последовательном переводе отношения из 1НФ в НФ более высокого порядка по определенным правилам. Каждая следующая НФ ограничивается определенным типом функциональных зависимостей и устранением соответствующих аномалий при выполнении операций над отношениями БД, а также сохранении свойств предшествующих НФ.
Читать дальше →

Kaggle: Британские спутниковые снимки. Как мы взяли третье место

Reading time22 min
Views42K

Сразу оговорюсь, что данный текст — это не сухая выжимка основных идей с красивыми графиками и обилием технических терминов (такой текст называется научной статьей и я его обязательно напишу, но потом, когда нам заплатят призовые $20000, а то, не дай бог, начнутся разговоры про лицензию, авторские права и прочее.) (UPD: https://arxiv.org/abs/1706.06169). К моему сожалению, пока устаканиваются все детали, мы не можем поделиться кодом, который написали под эту задачу, так как хотим получить деньги. Как всё утрясётся — обязательно займемся этим вопросом. (UPD: https://github.com/ternaus/kaggle_dstl_submission)

Так вот, данный текст — это скорее байки по мотивам, в которых, с одной стороны, всё — правда, а с другой, обилие лирических отступлений и прочей отсебятины не позволяет рассматривать его как что-то наукоемкое, а скорее просто как полезное и увлекательное чтиво, цель которого показать, как может происходить процесс работы над задачами в дисциплине соревновательного машинного обучения. Кроме того, в тексте достаточно много лексикона, который специфичен для Kaggle и что-то я буду по ходу объяснять, а что-то оставлю так, например, вопрос про гусей раскрыт не будет.

PyTorch — ваш новый фреймворк глубокого обучения

Reading time22 min
Views216K

Gotta Torch?


PyTorch — современная библиотека глубокого обучения, развивающаяся под крылом Facebook. Она не похожа на другие популярные библиотеки, такие как Caffe, Theano и TensorFlow. Она позволяет исследователям воплощать в жизнь свои самые смелые фантазии, а инженерам с лёгкостью эти фантазии имплементировать.


Данная статья представляет собой лаконичное введение в PyTorch и предназначена для быстрого ознакомления с библиотекой и формирования понимания её основных особенностей и её местоположения среди остальных библиотек глубокого обучения.

Fire walk with me

Скрытые цепи Маркова, алгоритм Витерби

Reading time5 min
Views60K
Нам нужно реализовать детектор лжи, который по подрагиванию рук человека, определяет, говорит он правду или нет. Допустим, когда человек лжет, руки трясутся чуть больше. Сигнал может быть таким:

Исходный сигнал

Интересный метод, описан в статье «A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition» L.R. Rabiner, которая вводит модель скрытой цепи Маркова и описывает три ценных алгоритма: The Forward-Backward Procedure, Viterbi Algorithm и Baum-Welch reestimation. Несмотря на то, что эти алгоритмы представляют интерес только в совокупности, для большего понимания описывать их лучше по отдельности.
Читать дальше →

Information

Rating
Does not participate
Location
Москва и Московская обл., Россия
Date of birth
Registered
Activity