
Локализацию можно автоматизировать: опыт использования Lokalise в боевых условиях

User
Здравствуйте, коллеги. Рассмотрим обычный онлайн-эксперимент в некоторой компании «Усы и когти». У неё есть веб-сайт, на котором есть красная кнопка в форме прямоугольника с закругленными краями. Если пользователь нажимает на эту кнопку, то где-то в мире мурлычет от радости один котенок. Задача компании — максимизация мурлыкания. Также есть отдел маркетинга, который усердно исследует формы кнопок и то, как они влияют на конверсию показов в клико-мурлыкания. Потратив почти весь бюджет компании на уникальные исследования, отдел маркетинга разделился на четыре противоборствующие группировоки. У каждой группировки есть своя гениальная идея того, как должна выглядеть кнопка. В целом никто не против формы кнопки, но красный цвет раздражает всех маркетологов, и в итоге было предложено четыре альтернативных варианта. На самом деле, даже не так важно, какие именно это варианты, нас интересует тот вариант, который максимизирует мурлыкания. Маркетинг предлагает провести A/B/n-тест, но мы не согласны: и так на эти сомнительные исследования спущено денег немерено. Попробуем осчастливить как можно больше котят и сэкономить на трафике. Для оптимизации трафика, пущенного на тесты, мы будем использовать шайку многоруких байесовских бандитов (bayesian multi-armed bandits). Вперед.
Как объяснить контейнеру docker-а сколько у него есть ресурсов?
К написанию этой небольшой заметки меня подтолкнула статья-перевод Java и Docker: это должен знать каждый и скудный на результаты поиск информации по теме. Я давно использую LXC, который тоже ограничивает ресурсы контейнеров средствами cgroup, и там эта проблема уже решена.
Что общего у нормального распределения, конечных автоматов, хеш-таблиц, произвольных предикатов, строк, выпуклых оболочек, афинных преобразований, файлов конфигураций и стилей CSS? А что объединяет целые числа, типы в Haskell, произвольные графы, альтернативные функторы, матрицы, регулярные выражения и статистические выборки? Наконец, можно ли как-то связать между собой булеву алгебру, электрические цепи, прямоугольные таблицы, теплоизоляцию труб или зданий и изображения на плоскости? На эти вопросы есть два важных ответа: 1) со всеми этими объектами работают программисты, 2) эти объекты имеют сходную алгебраическую структуру: первые являются моноидами, вторые — полукольцами, третьи — алгебрами де Моргана.
Совсем недавно пришла в голову идея сделать "говорилку" на русском языке. В голове была простенькая схема наподобие:
1) Распознать речь с микрофона
2) Придумать более — менее разумный ответ.
В этом пункте можно сделать много интересного.
Например реализовать управление чем — нибудь физическим и не очень.
3) Преобразовать этот самый ответ в речь и воспроизвести.
Самое интересное, что для всех этих пунктов нашлись библиотеки под Python, чем я и воспользовался.
В итоге получилась связка, практически не зависящая от выбранного в качестве разговорного языка.
Я провожу в терминале много времени, поэтому хочется, чтобы все было красиво, быстро и удобно. Из этого рождается постоянное желание его настраивать, пробовать разные плагины. Шеллом я выбрал для себя zsh лет 5 назад, пару лет назад нашел oh-my-zsh для его удобной настройки.
Со временем к этому конфигу добавились некоторые сбоку торчащие части в виде powerline и percol.
Недавно я решил пересобрать все так, чтобы избавиться от ненужных плагинов, добавить нужные, сделать легкую установку и обновление. В итоге появилась роль ansible-role-zsh, которая полностью настраивает терминалы на локалке и на моих серверах.
~/.zshrc
~/.oh-my-zsh
)~/.zshrc.local
Ctrl+R
)time
)Демонстрация фич за 1 минуту:
Здравствуйте, меня зовут Саша, я написал самый быстрый ресайз изображений для современных х86 процессоров. Я так утверждаю, поскольку все остальные библиотеки, которые я сумел найти и протестировать, оказались медленнее. Я занялся этой задачей, когда работал над оптимизацией ресайза картинок на лету в Uploadcare. Мы решили открыть код и в результате появился проект Pillow-SIMD. Любой желающий с легкостью может использовать его в приложении на языке Python.
Любой код выполняется на конкретном железе и хорошей оптимизации можно добиться, только понимая его архитектуру. Всего я планирую выпустить 4 или 5 статей, в которых расскажу как применять знание архитектуры железа для оптимизации реальной задачи. Своим примером я хочу побудить вас оптимизировать другие прикладные задачи. Первые две статьи выйдут в течение недели, остальные — по мере готовности.