Pull to refresh
215
37.4
Send message

Профилирование Python-программ и анализ их производительности

Reading time14 min
Views32K

Профилирование — это неотъемлемая часть любых работ по оптимизации кода или производительности программ. Любой опыт, любые знания в сфере оптимизации производительности, которые уже у вас есть, не принесут особой пользы в том случае, если вы не знаете о том, где их применить. В результате оказывается, что поиск узких мест приложений может помочь в деле решения проблем производительности, поможет сделать это быстро и приложив не слишком много усилий.

В этом материале мы обсудим инструменты и методы работы, которые способны обнаруживать и конкретизировать проблемы с производительностью кода, связанные и с ресурсами процессора, и с потреблением памяти. Здесь же мы поговорим о том, как реализовывать (почти безо всяких усилий) простые механизмы, позволяющие бороться с проблемами производительности. Эти механизмы используются в тех случаях, когда даже точно просчитанные изменения кода больше не позволяют улучшить ситуацию.

Читать далее

Рисуем красивые трейсбеки, перехватывая исключения в Python

Reading time10 min
Views16K

Все мы тратим немало времени на отладку, копаясь в логах или читая трейсбеки (traceback, отчёты о трассировке стека). Любое из этих дел может оказаться сложным и длительным. Этот материал посвящён тому, как сделать трассировку стека и работу с исключениями как можно более простыми и эффективными.

На пути к этой цели мы узнаем о том, как реализовывать и использовать собственные перехватчики исключений (exception hook), которые позволяют убрать из трейсбеков весь «информационный шум». Мы поговорим о том, как улучшить читабельность отчётов о трассировке стека, как выводить в них лишь то, что нужно для решения проблем с Python-кодом и с возникающими в процессе его работы исключениями. Кроме того, мы посмотрим на несколько потрясающих Python-библиотек, в которых имеются готовые к использованию, хорошо сделанные перехватчики исключений. Их можно использовать без необходимости написания собственного кода перехватчиков.

Читать далее

Оптимизация использования памяти в Python-приложениях

Reading time13 min
Views20K

Прим. Wunder Fund: мы занимаемся высокочастотной торговлей и это заставляет нас часто думать об оптимизации кода, но в основном, конечно, плюсового. В этой короткой статье описаны несколько подходов к оптимизации Python-программ по памяти. И хотя много проблем можно решить, просто докупив ещё памяти, но не все.

Когда заходит разговор об оптимизации производительности приложений, обычно основное внимание уделяют лишь скорости процессора и уровню его использования. Редко кого заботят соображения, касающиеся потребления памяти. Ну — до тех пор, пока программа не исчерпает доступную ей RAM. Обычно, оптимизируя работу с памятью, программы защищают от сбоев, вызываемых ошибками, связанными с нехваткой памяти. Но существует и множество других причин для того, чтобы попытаться ограничить потребление памяти приложением.

В этом материале я исследую подходы, используемые для выяснения того, какие именно части Python-приложений потребляют слишком много памяти. Я проанализирую причины этого и, в итоге, расскажу о том, как снизить уровень потребления памяти, как сделать так, чтобы приложение занимало бы в памяти меньше места. В частности, речь пойдёт о некоторых несложных приёмах и о применении структур данных, позволяющих эффективно использовать память.

Читать далее

DeepETA: как Uber прогнозирует ETA с использованием глубокого обучения

Reading time13 min
Views3.6K

Прим. Wunder Fund: В сегодняшней статье рассказываем, как Уберу удается точно предсказывать время прибытия такси или курьера. Мы нашли её очень увлекательной, как и несколько других статьей из технического блога Убера.

Волшебный клиентский опыт пользователей Uber зависит от точного прогнозирования ожидаемого времени прибытия (Estimated Time of Arrival, ETA) автомобиля. Мы используем ETA для расчёта тарифов, для оценки времени подачи автомобилей, для стыковки пассажиров и водителей, для планирования доставок и для многого другого. Традиционные системы маршрутизации вычисляют ETA путём разделения дорожной сети на маленькие сегменты, представленные взвешенными рёбрами графа. Эти системы используют алгоритмы поиска кратчайшего пути для нахождения наилучшего пути на графе и складывают веса для получения ETA. Но, как всем известно, карта — это не то же самое, что поверхность Земли: граф дорог — это всего лишь модель, она не способна идеально соответствовать реальности. Более того — мы можем не знать о том, какой именно маршрут к пункту назначения выберет конкретный пассажир или водитель. Обучая ML-модели (Machine Learning, машинное обучение) на базе прогнозов, построенных с применением графов дорог, применяя исторические данные в комбинации с данными, получаемыми в режиме реального времени, мы можем уточнить расчёт ETA, приблизить расчётные показатели к реальным.

Читать далее

Фаззинг сокетов: Apache HTTP Server. Часть 3: результаты

Reading time9 min
Views2.2K

Прим. Wunder Fund: наш СТО Эмиль по совместительству является известным white-hat хакером и специалистом по информационной безопасности, и эту статью он предложил как хорошее знакомство с фаззером afl и вообще с фаззингом как таковым.

В первой части этой серии статей я рассказал о том, как организовать фаззинг Apache HTTP Server с привлечением кастомных мутаторов. Во втором материале я раскрыл вопрос создания перехватчиков ASAN, которые позволяют выявлять ошибки при использовании собственных реализаций пулов памяти.

Эта статья, третья и последняя, посвящена результатам моих исследований. Я расскажу тут об обнаруженных мной уязвимостях Apache.

Читать далее

Фаззинг сокетов: Apache HTTP Server. Часть 2: кастомные перехватчики

Reading time10 min
Views2.6K

Прим. Wunder Fund: наш СТО Эмиль по совместительству является известным white-hat хакером и специалистом по информационной безопасности, и эту статью он предложил как хорошее знакомство с фаззером afl и вообще с фаззингом как таковым.

В первой статье из этой серии я рассказал о том, с чего стоит начать тому, кто хочет заняться фаззингом Apache HTTP Server. Там мы обсудили разработку кастомных мутаторов в AFL++, поговорили о том, как создать собственный вариант грамматики HTTP.

Сегодня я уделю внимание написанию перехватчиков ASAN, которые позволяют «ловить» баги в кастомных пулах памяти. Здесь пойдёт речь и о том, как перехватывать системные вызовы, нацеленные на файловую систему. Это позволяет выявлять логические ошибки в исследуемом приложении.

Читать далее

Фаззинг сокетов: Apache HTTP Server. Часть 1: мутации

Reading time12 min
Views5.8K

Прим. Wunder Fund: наш СТО Эмиль по совместительству является известным white-hat хакером и специалистом по информационной безопасности, и эту статью он предложил как хорошее знакомство с фаззером afl и вообще с фаззингом как таковым.

Этот материал открывает серию из трёх статей (она продолжает материалы о фаззинге FTP-серверов и FreeRDP), посвящённых фаззинг-тестированию реализации протокола HTTP, представленной в Apache HTTP Server. Это — один из самых популярных веб-серверов и в представлении он не нуждается. Так, Apache HTTP — это один из первых HTTP-серверов, разработка которого началась в 1995 году. По состоянию на январь 2021 года под его управлением работали более чем 300000000 серверов, а значит — он использовался на 26% таких систем и занимал второе место по распространённости, немного уступая лишь Nginx (31%).

В этой статье я вкратце расскажу о том, как работает Apache, и освещу кое-какие идеи, которые помогут всем желающим лучше понять суть кастомных мутаторов, и то, как можно эффективно их применять для исследования реализаций протокола HTTP.

Читать далее

GTD за 15 минут: прагматическое руководство

Reading time14 min
Views48K

GTD (Getting Things Done, Доведение дел до завершения) — это методика организации и отслеживания задач и проектов. Но эта методика, правда, ориентирована на нечто большее, чем только на «доведение дел до завершения». (Ей стоило бы называться «Доведение дел до завершения гораздо лучшим способом, чем просто позволяя чему-то идти своим чередом, что часто получается не так, чтобы очень уж хорошо»). Цель GTD — сделать так, чтобы человек полностью доверял бы системе сбора задач, идей и проектов. Это относится и к туманным задачам, вроде «сделать самое великое изобретение», и к конкретным делам, вроде «позвонить Аде 25 августа чтобы обсудить программу конференции». Речь идёт абсолютно обо всём!

Читать далее

3 особенности чисел в Python, о которых вы, возможно, не знали

Reading time15 min
Views53K

Если вы писали код на Python, то весьма высока вероятность того, что вы, хотя бы в одной из своих программ, пользовались числами. Например, это могли быть целые числа для указания индекса значения в списке, или числа с плавающей точкой, представляющие суммы в некоей валюте.

Но числа в Python — это гораздо больше, чем, собственно, их числовые значения. Поговорим о трёх особенностях чисел в Python, с которыми вы, возможно, не знакомы.

Читать далее

Сравнение матричной факторизации с трансформерами на наборе данных MovieLens с применением библиотеки pytorch-acceleratd

Reading time45 min
Views7.9K

Современный человек много чем занимается в интернете: ходит по магазинам, слушает музыку, читает новости. Все эти задачи подразумевают поиск и выбор того, что ему нужно. При этом важную роль тут играют рекомендательные системы. Они помогают людям не утонуть в многообразии вариантов и увидеть именно то, что им подойдёт, то, что иначе им сложно было бы найти. Предоставление пользователям качественных рекомендаций — это важнейшая часть обеспечения первоклассного уровня удовлетворения клиента. Это — один из самых эффективных способов взращивания лояльности клиентов и повышения ценности продукта или услуги в их глазах. Всё это так важно, что целые бизнес-модели некоторых компаний построены вокруг предоставления их клиентам наилучших рекомендаций, что делает рекомендательные системы важнейшими факторами, влияющими на прибыль подобных компаний! В результате неудивительно то, что клиенты проекта Microsoft CSE часто обращаются к нам с просьбами, касающимися реализации эталонных рекомендательных техник. Один из таких проектов был моим первым опытом в данной сфере.

Читать далее

Как я написал алгоритм сортировки, который быстрее std::sort. Продолжение

Reading time21 min
Views10K

Прим. Wunder Fund: не спешите минусовать эту публикацию — её перевода на Хабре ещё не было :)

Это — продолжение моей предыдущей публикации (вот — перваявторая и третья части перевода), посвящённой тому, как я создал алгоритм сортировки, который быстрее std::sort. Эта статья — мой шанс углубиться в те детали, о которых меня спрашивали в комментариях. Я собираюсь разъяснить здесь некоторые вещи, которые оказались непонятными аудитории, и поговорить о будущем моего алгоритма, о доработках, в которых он нуждается.

Кто-то, за что я этому неизвестному благодарен, разместил ссылки на мою статью на Hacker News и на Reddit. И хотя эти ссылки там разместил не я, я, всё же, прочитал большую часть комментариев, сделанных пользователями этих сайтов. По какой-то причине те комментарии, что были сделаны в моём блоге, оказались гораздо позитивнее, чем комментарии на Hacker News и Reddit. Но у меня такое ощущение, что причина появления негативных комментариев заключается, в целом, в неправильном понимании того, о чём я пишу. Здесь я собираюсь расставить все точки над «i».

Читать далее

Как я написал алгоритм сортировки, который быстрее std::sort. Часть 3

Reading time12 min
Views7.4K

Публикуем третью часть перевода материала о быстром алгоритме сортировки. Вот, на всякий случай, ссылки на первую и вторую части. В тех материалах мы говорили о теории сортировки, об особенностях работы нового алгоритма, разбирали тесты его производительности. Сегодня речь пойдёт о проблемах алгоритма, автор даст ответы на некоторые вопросы и поделится планами на будущее.

Прим. Wunder Fund: ну, вы наверное, и сами догадываетесь, как мы любим быстрые алгоритмы и оптимизации. Если вы тоже такое любите — вы знаете, что делать)

Читать далее

Как я написал алгоритм сортировки, который быстрее std::sort. Часть 2

Reading time17 min
Views8.2K

Прим. Wunder Fund: ну, вы наверное, и сами догадываетесь, как мы любим быстрые алгоритмы и оптимизации. Если вы тоже такое любите — вы знаете, что делать)

Публикуем вторую часть перевода материала об очень быстром алгоритме сортировки — «Ska Sort». В первой части говорилось о временной сложности алгоритмов и о том, какие улучшения базового алгоритма «Американский флаг» позволили автору «Ska Sort» повысить скорость сортировки. Сегодняшний материал посвящён рассказу о том, почему новый алгоритм быстрее других алгоритмов сортировки.

Читать далее

Как я написал алгоритм сортировки, который быстрее std::sort. Часть 1

Reading time14 min
Views22K

Прим. Wunder Fund: ну, вы наверное, и сами догадываетесь, как мы любим быстрые алгоритмы и оптимизации. Если вы тоже такое любите — вы знаете, что делать)

В наши дни сказать, что изобрёл алгоритм сортировки, который на 30% быстрее того, что считают эталонным, это значит — сделать довольно смелое заявление. Я, к сожалению, вынужден сделать ещё более смелое заявление. Дело в том, что я создал алгоритм сортировки, который, для многих вариантов входных данных, вдвое быстрее std::sort. И, за исключением сортировки специально созданных входных последовательностей, на которых алгоритм упирается в свой худший случай, он всегда быстрее std::sort. (А когда появляются данные, приводящие к худшему случаю алгоритма, я эту ситуацию детектирую и автоматически перехожу на std::sort).

Почему я сказал: «…к сожалению, вынужден…»? Вероятно из-за того, что мне, скорее всего, предстоит нелёгкое дело убеждения читателя в том, что я действительно увеличил скорость сортировки в два раза. Поэтому материал, который я начинаю писать, вполне может получиться достаточно длинным. Но весь мой код открыт — это значит, что вы можете попробовать мои наработки на данных, характерных для вашей сферы деятельности. Поэтому я могу убедить вас в достоинствах моего алгоритма с помощью массы аргументов и результатов измерений. А ещё вы можете просто попробовать алгоритм самостоятельно.

Учитывая то, о чём я писал в моём прошлом материале, это, конечно, вариант поразрядной сортировки (radix sort). То есть — его временная сложность ниже, чем O(n log n). Вот два основных направления, по которым я усовершенствовал базовый алгоритм:

Читать далее

Знакомство с трансформерами. Часть 3

Reading time13 min
Views7.2K

Первая и вторая части перевода материала о трансформерах были посвящены теоретическим основам этого семейства нейросетевых архитектур, рассказу о способах их использования, демонстрации их реализации с применением PyTorch. Сегодня речь пойдёт об истории трансформеров, будет дан обзор современного состояния дел в этой сфере.

Читать далее

Знакомство с трансформерами. Часть 2

Reading time11 min
Views13K

Публикуем вторую часть материала о трансформерах. В первой части речь шла о теоретических основах трансформеров, были показаны примеры их реализации с использованием PyTorch. Здесь поговорим о том, какое место слои внутреннего внимания занимают в нейросетевых архитектурах, и о том, как создают трансформеры, ориентированные на решение различных задач. 

Читать далее

Знакомство с трансформерами. Часть 1

Reading time13 min
Views29K

Трансформеры (transformers) — это очень интересное семейство архитектур машинного обучения. Существует много хороших учебных материалов по этой теме (например — вот и вот), но в последние несколько лет трансформеры, в основном, становились всё проще. Поэтому сейчас гораздо легче, чем раньше, объяснить принципы их работы. Этот материал представляет собой попытку, что называется, «на пальцах», объяснить то, как работают современные трансформеры.

Предполагается, что читатель обладает элементарными представлениями о нейронных сетях и об алгоритме обратного распространения ошибки. Если вы хотите освежить знания в этих областях — вот видео, которое поможет вам вспомнить основы нейронных сетей, а здесь вы найдёте рассказ о том, как соответствующие принципы применяются в современных системах глубокого обучения.

Для того чтобы понять примеры кода, понадобятся практические знания фреймворка PyTorch. Но эти примеры можно и пропустить без вреда для понимания остального материала.

Здесь можно найти видеолекции о трансформерах. А в этом репозитории имеется реализация простого трансформера с использованием PyTorch.

Читать далее

Эмбеддинги признаков и повышение точности ML-моделей

Reading time7 min
Views40K

Прим. Wunder Fund: короткая статья о том, как эмбеддинги могут помочь при работе с категориальными признаками и сетками. А если вы и так умеете в сетки — то мы скоро открываем набор рисерчеров и будем рады с вами пообщаться, stay tuned.

Создание эмбеддингов признаков (feature embeddings) — это один из важнейших этапов подготовки табличных данных, используемых для обучения нейросетевых моделей. Об этом подходе к подготовке данных, к сожалению, редко говорят в сферах, не связанных с обработкой естественных языков. И, как следствие, его почти полностью обходят стороной при работе со структурированными наборами данных. Но то, что его, при работе с такими данными, не применяют, ведёт к значительному ухудшению точности моделей. Это стало причиной появления заблуждения, которое заключается в том, что алгоритмы градиентного бустинга, вроде того, что реализован в библиотеке XGBoost, это всегда — наилучший выбор для решения задач, предусматривающих работу со структурированными наборами данных. Нейросетевые методы моделирования, улучшенные за счёт эмбеддингов, часто дают лучшие результаты, чем методы, основанные на градиентном бустинге. Более того — обе группы методов показывают серьёзные улучшения при использовании эмбеддингов, извлечённых из существующих моделей.

Эта статья направлена на поиск ответов на следующие вопросы:

1. Что такое эмбеддинги признаков?
2. Как они используются при работе со структурированными данными?
3. Если использование эмбеддингов — это столь мощная методика — почему она недостаточно широко распространена?
4. Как создавать эмбеддинги?
5. Как использовать существующие эмбеддинги для улучшения других моделей?

Читать далее

Пишем Python-расширение на Ассемблере (зачем?)

Reading time34 min
Views16K

Прим. Wunder Fund: в жизни каждого человека случается момент, когда ему приходиться позаниматься реверс-инжинирингом. В статье вы найдёте базовые особенности работы с ассемблером, а также прочитаете увлекательную историю господина, который решил написать Питон-библиотеку на ассемблере и многому научился на своём пути.

Иногда, чтобы полностью разобраться с тем, как что-то устроено, нужно это сначала разобрать, а потом собрать. Уверен, многие из тех, кто это читают, в детстве часто поступали именно так. Это были дети, которые хватались за отвёртку для того, чтобы узнать, что находится внутри у чего-то такого, что им интересно. Разбирать что-то — это невероятно увлекательно, но чтобы снова собрать то, что было разобрано, нужны совсем другие навыки.

Нечто, выглядящее для стороннего наблюдателя как работающая программная система, таит внутри себя хитросплетения паттернов проектирования, патчей и «костылей». Программисты привыкли работать на низких уровнях систем, привыкли возиться с их неказистыми «внутренностями» для того, чтобы заставить эти системы выполнять простые инструкции.

Эксперимент, о котором я хочу рассказать, пронизан тем же духом. Мне хотелось узнать о том, смогу ли я написать расширение для CPython на чистом ассемблере.

Зачем мне это? Дело в том, что после того, как я дописал книгу CPython Internals, разработка на ассемблере всё ещё была для меня чем-то весьма таинственным. Я начал изучать ассемблер для x86-64 по этой книге, понял какие-то базовые вещи, но не мог связать их со знакомыми мне высокоуровневыми языками.

Вот некоторые вопросы, ответы на которые мне хотелось найти:

— Почему расширения для CPython надо писать на Python или на C?
— Если C-расширения компилируются в общие библиотеки, то что такого особенного в этих библиотеках? Что позволяет загружать их из Python?
— Как воспользоваться ABI между CPython и C, чтобы суметь расширять возможности CPython, пользуясь другими языками?

Читать далее

Практические рекомендации по работе с Docker для Python-разработчиков

Reading time28 min
Views117K

Прим. Wunder Fund: в этой длииинной статье вы найдете ряд полезных советов по работе с Docker, как общего характера, так и Python-специфичных. Хоть мы и давно используем Docker в работе, про некоторые советы мы подумали "а что, так можно было?". Советуем вначале пролистать статью, и отметить штуки, которые покажутся актуальными для вашей текущей ситуации.

Читать далее

Information

Rating
210-th
Works in
Registered
Activity