Как стать автором
Обновить

ИИ от Google самостоятельно освоил 49 старых игр Atari

Время на прочтение2 мин
Количество просмотров49K


Компания Google создала систему искусственного интеллекта, которая играет лучше человека во многие аркадные игры. Программа научилась играть, не зная правил и не имея доступа к коду, а просто наблюдая за картинкой на экране.

Эта разработка не такая легкомысленная, как может показаться. Универсальная самообучаемая система когда-нибудь может найти применение, например, в автономных автомобилях и других проектах, где нужно анализировать состояние окружающих объектов и принимать решения. Скажем, при установке в автономный автомобиль ИИ методом проб и ошибок определит, на какой сигнал светофора лучше проезжать перекрёсток. Если без шуток, то программа способна находить решение для широкого спектра задач, независимо от правил и начальных условий.

Интересно ещё и то, что в 20 играх ИИ не смог превзойти человека. Например, он серьёзно облажался в игре Pac-Man, так и не научившись планировать свои действия на несколько секунд вперёд. Он также не понял, что съев определённые волшебные шарики можно пожирать призраков. В итоге, программа сумела набрать всего 13% от рекорда, поставленного лучшим профессиональным игроком.

Тренировку нейросети под названием DQN осуществило лондонское подразделение Google DeepMind. Искусственному интеллекту не сообщали правила игры. Нейросеть сама анализировала состояние и искала способ, каким образом набрать максимальное количество очков. При обучении и принятии решения она учитывала только четыре последних кадра.

В результате DQN смогла в 22 из 49 игр превзойти лучший результат людей-игроков и в 43 из 49 игр победить любой другой специализированный компьютерный алгоритм.



«Это действительно первый в мире алгоритм, который соответствует человеческому уровню на большом разнообразии сложных задач», — говорит Демис Хассабис (Demis Hassabis), сооснователь DeepMind.

Результаты исследования опубликованы в журнале Nature.



Обучаемые нейросети часто используют в системах распознавания образов, а DeepMind использовала метод обучения с подкреплением, когда ИИ получает «вознаграждение» за выполнение определённых действий — и самостоятельно улучшает результат по мере накопления опыта.

Программа лучше всего проявила себя в простых играх вроде пинбола (2439% от результата человека), бокса (1607%) и в игре Breakout (1227%), где нужно отбивать мячик, расчищая блоки на экране. Она даже освоили трюк профессиональных игроков, когда в массиве блоков пробивается туннель и шарик запускается в верхнюю часть экрана!



«Это очень удивило нас, — сказал Хассабис. — Такая стратегия полностью вытекает из лежащей в основе игровой механики».

Компьютеры давно используются для управления игровым процессом, но современные системы ИИ вышли на новый уровень. Самообучение DQN предполагало анализ информации на экране в реальном времени, то есть обработку примерно 2 млн пикселей в секунду. Такими темпами ИИ в будущем сможет научиться анализировать окружающую действительность настоящего мира в реальном времени, снимая всё вокруг себя с помощью видеокамер. Это открывает для него совершенно новые области применения.
Теги:
Хабы:
+51
Комментарии75

Публикации

Истории

Ближайшие события

Weekend Offer в AliExpress
Дата20 – 21 апреля
Время10:00 – 20:00
Место
Онлайн
Конференция «Я.Железо»
Дата18 мая
Время14:00 – 23:59
Место
МоскваОнлайн