Обновить
257.77

Алгоритмы *

Все об алгоритмах

Сначала показывать
Порог рейтинга
Уровень сложности

Чисто функциональные структуры данных

Время на прочтение7 мин
Охват и читатели42K
Признаюсь. Я не очень любил курс структур данных и алгоритмов в университете. Все эти стеки, очереди, кучи, деревья, графы (будь они не ладны) и прочие “остроумные” названия непонятных и сложных структур данных ни как не хотели закрепляться в моей голове. Как истинный “прагматик”, я уже на втором — третьем курсе свято верил в стандартную библиотеку классов и молился на дарованные нам (простым смертным) коллекции и контейнеры, бережно реализованные отцами и благородными донами CS. Казалось, все что можно было придумать — уже давно придумано и реализовано.

Все изменилось примерно год назад, когда я узнал, что есть другой мир. Мир отличный от нашего с вами. Более чистый и предсказуемый мир. Мир без побочных эффектов, мутаций, массивов и деструктивных апдейтов (переприсваиваний в переменную). Мир, где всем правит мудрейшая королева персистетность и ее прекрасные сестры — функция и рекурсия. Я говорю о чисто функциональном мире, где гармонично существуют, или даже живут, проекции почти всех известных нам структур данных.

И сейчас, я хочу показать вам небольшую частицу этого мира. Через замочную скважину, мы на секунду заглянем в этот удивительный мир, чтобы рассмотреть одного из наиболее ярких его обитателей — функциональное красно-черное дерево (КЧД).
Читать дальше →

Преобразование равномерно распределенной случайной величины в нормально распределенную

Время на прочтение6 мин
Охват и читатели137K
Этот вопрос уже давно подробно изучен, и наиболее широкое распространение получил метод полярных координат, предложенный Джорджем Боксом, Мервином Мюллером и Джорджем Марсальей в 1958 году. Данный метод позволяет получить пару независимых нормально распределенных случайных величин с математическим ожиданием 0 и дисперсией 1 следующим образом:
алгоритм марсалья marsaglia
где Z0 и Z1 — искомые значения, s = u2 + v2, а u и v — равномерно распределенные на отрезке (-1, 1) случайные величины, подобранные таким образом, чтобы выполнялось условие 0 < s < 1.
Многие используют эти формулы, даже не задумываясь, а многие даже и не подозревают об их существовании, так как пользуются готовыми реализациями. Но есть люди, у которых возникают вопросы: «Откуда взялась эта формула? И почему получается сразу пара величин?». Далее я постараюсь дать наглядный ответ на эти вопросы.

Читать дальше →

Алгоритмы и структуры данных поиска. Лекции и курсы от Яндекса

Время на прочтение4 мин
Охват и читатели160K
Сегодня мы завершаем новогоднюю серию постов, посвященных лекциям Школы анализа данных. Последний по порядку, но никак не по важности курс — «Алгоритмы и структуры данных поиска».

В этом курсе рассматриваются базовые алгоритмы и структуры данных, включая хешировани, сложность и модели вычислений, деревья поиска, B-деревья, задачи геометрического поиска, динамическую связность в графах и другое.

Мы учли то, о чём нас просили в комментариях к прошлым курсам — теперь при желании можно не только смотреть/скачивать лекции по отдельности, но и загрузить всё разом в виде открытой папки на Яндекс.Диске. Кстати — в предыдущих постах тоже появились такие же апдейты (вот ссылки для удобства: «машинное обучение», «дискретный анализ и теория вероятностей», «параллельные и распределённые вычисления»).



Лекции читает Максим Александрович Бабенко, заместитель директора отделения computer science, ассистент кафедры математической логики и теории алгоритмов механико-математического факультета МГУ им. М. В. Ломоносова, кандидат физико-математических наук.
Содержание курса, тезисы лекций и ссылки на видео

Вычисление фрактальной размерности Минковского для плоского изображения

Время на прочтение10 мин
Охват и читатели102K
Доброго времени суток читатель. Сегодняшний пост будет посвящен вычислению приближенного значения фрактальной размерности плоского изображения, которая тесно связано с размерности Минковского. Это интересно как минимум по двум причинам. Во-первых оказывается, что размерность ограниченного множества в метрическом пространстве может быть не только целым числом, но и любым неотрицательным. Во-вторых значение размерности контура изображения (а это ограниченное множество в метрическом пространстве) является хорошим признаком. В рамках сегодняшнего поста не предусмотрено исследование робастности этого признака, но давайте рассмотрим показательный пример. Множество различных характеристик клеток опухолей молочной железы, полученное в результате анализа снимков тонкоигольной пункционной биопсии. Множество данных состоит из 30 признаков (поля таблицы) с пометкой злокачественная или доброкачественная опухоль, и одним из признаков является как раз фрактальная размерность ядер клеток опухоли. Под катом вас ждет объяснение смысла фрактальной размерности множества, по возможности доступным языком, алгоритм вычисления приближенного значения этой размерности, его реализация на c# и ряд примеров с картинками. Возможно вы открыли этот пост только из-за картинки справа, это изображение я позаимствовал из инстаграмма Jennifer Selter, и в конце мы вычислим фрактальную размерность, так сказать филейной части Дженифер. Хочется кстати вас попросить ответить на пару вопросов в конце поста.

Читать дальше →

Длинная арифметика от Microsoft

Время на прочтение9 мин
Охват и читатели122K

Введение


Известно, что компьютер может оперировать числами, количество бит которых ограниченно. Как правило, мы привыкли работать с 32-х и 64-х разрядными целыми числами, которым на платформе .NET соответствуют типы Int32 (int) и Int64 (long) соответственно.

А что делать, если надо представить число, такое как, например, 29! = 8841761993739701954543616000000? Такое число не поместится ни в 64-х разрядный, ни тем более 32-х разрядный тип данных. Именно для работы с такими большими числами существует длинная арифметика.

Длинная арифметика — в вычислительной технике операции (сложение, умножение, вычитание, деление, возведение в степень и т.д.) над числами, разрядность которых превышает длину машинного слова данной вычислительной машины. Эти операции реализуются не аппаратно, а программно, используя базовые аппаратные средства работы с числами меньших порядков.
Читать дальше →

Зачем нам всем нужен SAT и все эти P-NP (часть первая)

Время на прочтение12 мин
Охват и читатели65K
SAT уже тем хорош, что он ум в порядок приводит
Ломоносов (оригинал)

Введение


На хабре уже немало статей, посвященных проблеме P vs. NP и задаче о выполнимости логических формул (SATisfiability problem). Однако, большинство из них не отвечает на несколько самых важных вопросов. Почему эта проблема действительна важна для нас? Что будет, если её решат? Где это все вообще применяется? И почему необходимо иметь хотя бы общее представление, о чем там идет речь?

image

Если мы детально проанализируем наиболее заметные работы на хабре по данной теме [1, 2, 3, 4, 5, 6, 7], то заметим, что с одной стороны, люди обладающие знаниями в области вычислительной сложности не cмогут почерпнуть ничего принципиально нового в данных статьях. С другой стороны, данные статьи по-прежнему не являются общедоступными. Иллюстрация из заголовка наглядно демонстрирует проблему: тем, кому было не понятно, из неё ничего не ясно, а те, кто об этом уже слышал, в ней не нуждаются.

Данная статья преследует две цели: первое — дать общее представление о проблеме и ответить на вопрос, почему же нам стоить знать об этой задаче (первая часть), второе — предоставить материал «на вырост», который будет интересен людям интересующимся тематикой, а так же может быть полезен для изучения темы в дальнейшем (вторая часть).

Читать дальше →

Обучение OpenCV каскада Хаара

Время на прочтение8 мин
Охват и читатели205K
На хабре уже есть несколько статей и про то, что такое каскад Хаара (раз, два, три). Есть даже одна, где затронут процесс обучения, но в отношении описанной задачи. На тему обучения есть пара неплохих статей на английском (первая, вторая, третья), но, на мой взгляд, они путанные: либо рассказывают очень мало, либо слишком много и обо всём — выделить нужную мысль сложно.
image
В этой статье я попробую показать, как обучить каскад с нуля за несколько часов, натренировав на поиск простого предмета в видеопотоке (примером будет очаровательная сова с фотографии). Все обучающие выборки и программы будут приложены.
Зачем всё это нужно? Каскад Хаара это один из простейших способов распознавания классов объектов с большой скоростью работы. К ним относятся лица и руки людей, номера автомобилей, пешеходы. Детектором Хаара просто находить животных в кадре (кстати, удивительно, что я не видел ещё ни одной автоматической кормушки для синиц на raspberry pi). К тому же, готовые реализации OpenCV есть под большинство существующих систем (даже для blackfin'a встречал). Всё это делает Хаара одним из самых удобных методов, позволяющих решать задачи видеообработки даже людям, которые никогда не работали с обработкой видео.
Читать дальше →

Генерация абстрактных изображений с помощью генетических алгоритмов

Время на прочтение4 мин
Охват и читатели35K

Привет, хабр!


Этим летом я принял участие в Научно-образовательной школе МГУ, которая проводится Московским Государственным Университетом и Лабораторией Научного Творчества СУНЦ МГУ. В этой статье я хотел бы рассказать вам о проекте, который я разработал во время школы на спецкурсе по программированию под руководством MAD_GooZe.
image
Для нетерпеливых

Идея проекта


Итак, у нас возникла идея сделать что-нибудь интересное, используя генетические алгоритмы. Например — попытаться генерировать красивые абстрактные изображения. К слову сказать, до начала работы над этим проектом, я был знаком с генетическими алгоритмами весьма посредственно, но пообщавшись с руководителем и почитав некоторые статьи в интернете, я ринулся в бой.
Читать дальше →

Легко ли научить робота проходить тест для программистов?

Время на прочтение11 мин
Охват и читатели17K
Из этой статьи читатель узнает о том, как написать робота, проходящего тесты, и немножко «разомнет мозги» в теории вероятностей, разбираясь вместе с автором, почему при кажущейся сложности задачи автоматический подбор решения сходится за очень короткое время. Предупреждение: половина статьи ― «матан».

Введение


Несколько лет назад я сделал тест для программистов, который многим, скорее всего, не понравится. Если вы пишете на языке PHP, ваша любимая СУБД ― MySQL, а в качестве операционной системы вы предпочитаете Linux ― попробуйте его пройти. Заранее предупреждаю, тест своеобразный. Успешно его проходит всего несколько процентов испытуемых. Так что не стоит переживать. Если вы его не пройдете ― ничего страшного. Тест «заточен» под определенные навыки, которые требуются далеко не везде.

Получить отличный результат в тесте сложно. Поэтому некоторые испытуемые прибегают к черной магии ― пишут бота. Хорошее дело, между прочим. «Настойчивость и храбрость, отвага и удача, в беде не растеряться ― вот главная задача!» Поэтому капчи в тесте не было. Никогда. Наоборот, мне хотелось, чтобы ботов писали. Чтобы боты приходили. Чтобы тест выстоял, боты обломались, а «ботописатели» не жульничали, а учились.

В тесте 80 вопросов, из которых для каждого испытания случайным образом выбирается 25. У меня был простой (и, как потом выяснилось, абсолютно неверный) расчет. Чтобы тест нельзя было пройти, заучив или подобрав ответы, общая база вопросов изначально должна быть существенно больше, чем количество вопросов в одном испытании. Общее количество комбинаций тестов составляет число порядка 1020. «Раз число такое большое, значит, и подобрать ответы будет очень сложно», ― думал я. Конечно, число сочетаний ― очень грубая оценка. Но задача автоматического подбора интуитивно казалась мне если и решаемой, то такими затратами, на которые ботописатель не пойдет. Думать так было большой ошибкой. Битву с ботами я проиграл. Дальше расскажу, почему.
Осторожно, матан!

Построение множества Жюлиа

Время на прочтение8 мин
Охват и читатели82K
Привет. Кипят страсти, конец года, сессии, дедлайны, новый год, а так же цензура проникает во все слои интернетов, что не может не печалить. Хабр уже не торт. Просто хотелось написать, что я не согласен с таким подходом, но тогда бы меня просто забанили. Так что придется написать интересный контент. Хотя если забанят из-за предисловия к посту о множестве Жюлиа, ну что, тогда остатки торта стухли и шансов нет.

Итак, вернемся к теме поста. Я давно хотел немного больше узнать о комплексных числах, а не только то, что корень из минус единицы равен i. Особенно вызывали интерес фигуры имеющие фрактальную структуру, хотелось понять, что это значит, и как сделать такую визуализацию. Где то на полке стояла книжка по ТФКП, а так же закончился курс по комплексному анализу на курсере, и появилось немного свободного от работы времени. Приступим.
Читать дальше →

Изобретаем JPEG

Время на прочтение28 мин
Охват и читатели183K

Вы правильно поняли из названия, что это не совсем обычное описание алгоритма JPEG (формат файла я подробно описывал в статье «Декодирование JPEG для чайников»). В первую очередь, выбранный способ подачи материала предполагает, что мы ничего не знаем не только о JPEG, но и о преобразовании Фурье, и кодировании Хаффмана. И вообще, мало что помним из лекций. Просто взяли картинку и стали думать как же ее можно сжать. Поэтому я попытался доступно выразить только суть, но при которой у читателя будет выработано достаточно глубокое и, главное, интуитивное понимание алгоритма. Формулы и математические выкладки — по самому минимуму, только те, которые важны для понимания происходящего.

Знание алгоритма JPEG очень полезно не только для сжатия изображений. В нем используется теория из цифровой обработки сигналов, математического анализа, линейной алгебры, теории информации, в частности, преобразование Фурье, кодирование без потерь и др. Поэтому полученные знания могут пригодиться где угодно.

Если есть желание, то предлагаю пройти те же этапы самостоятельно параллельно со статьей. Проверить, насколько приведенные рассуждения подходят для разных изображений, попытаться внести свои модификации в алгоритм. Это очень интересно. В качестве инструмента могу порекомендовать замечательную связку Python + NumPy + Matplotlib + PIL(Pillow). Почти вся моя работа (в т. ч. графики и анимация), была произведена с помощью них.

Внимание, трафик! Много иллюстраций, графиков и анимаций (~ 10Мб). По иронии судьбы, в статье про JPEG всего 2 изображения с этим форматом из полусотни.
Читать дальше →

Задачи на собеседованиях в Яндексе

Время на прочтение15 мин
Охват и читатели362K
Открытые вакансии на должность разработчика в Яндексе есть всегда. Компания развивается, и хороших программистов не хватает постоянно. И претендентов на эти должности тоже хоть отбавляй. Главная сложность – отобрать действительно подходящих кандидатов. И в этом плане Яндекс мало чем отличается от большинства крупных IT-компаний. Так что базовые принципы, описываемые в этой статье, могут быть применимы не только к Яндексу.

Однако стоит оговориться, что статья все же про подбор разработчиков. Т.е. собственно тех восьмидесяти процентов сотрудников, на которых держится массовая разработка. Часто мы нанимаем людей на специальные вакансии: например, разработчиков систем компьютерного зрения, лингвистов, экспертов по машинному обучению. В этом случае формат собеседования может заметно отличаться.

image
Читать дальше →

Классификатор изображений

Время на прочтение7 мин
Охват и читатели35K
Дана битовая матрица, содержащая закрашенное изображение круга, квадрата или треугольника.
Изображение может быть немного искажено и может содержать помехи.
Необходимо написать алгоритм для определения типа нарисованной фигуры по матрице.

Эта простая с первого взгляда задача встретилась мне на вступительном экзамене в DM Labs.
На первом занятии мы обсудили решение, а преподаватель (Александр Шлемов; он руководил и дальнейшей реализацией) показал, почему для решения лучше использовать машинное обучение.

В процессе дискуссии мы обнаружили, что наше решение производится в два этапа. Первый этап — фильтрация помех, второй этап — вычисление метрики, по которой будет проходить классификация. Здесь возникает проблема определения границ: необходимо знать, какие значения может принимать метрика для каждой фигуры. Можно проложить эти границы вручную “на глазок”, но лучше поручить это дело математически обоснованному алгоритму.
Эта учебная задачка стала для меня введением в Machine Learning, и я хотел бы поделиться с вами этим опытом.
Читать дальше →

Ближайшие события

Машинное обучение и анализ данных. Лекция для Малого ШАДа Яндекса

Время на прочтение3 мин
Охват и читатели64K
Все чаще и чаще мы сталкиваемся с необходимостью выявлять внутренние закономерности больших объёмов данных. Например, для распознавания спама необходимо уметь находить закономерности в содержании электронных писем, а для прогнозирования стоимости акций — закономерности в финансовых данных. К сожалению, выявить их «вручную» часто невозможно, и тогда на помощь приходят методы машинного обучения. Они позволяют строить алгоритмы, которые помогают находить новые, ещё не описанные закономерности. Мы поговорим о том, что такое машинное обучение, где его стоит применять и какие сложности могут при этом возникнуть. Принципы работы нескольких популярных методов машинного обучения будут рассмотрены на реальных примерах.

Лекция предназначена для старшеклассников — студентов Малого ШАДа, но и взрослые с ее помощью смогут составить представление об основах машинного обучения.

image

Основная идея машинного обучения заключается в том, что имея обучающуюся программу и примеры данных с закономерностями, мы можем построить некоторую модель закономерности и находить закономерности в новых данных.
Видеозапись и конспект лекции

Майнинг и как он работает: матчасть

Время на прочтение6 мин
Охват и читатели567K

Привет, %username%!
Я расскажу и покажу как работает основа генерации денег в криптовалютах — майнинг. Как создается первый блок, новые блоки и как появляются деньги из ниоткуда.
Чтобы было проще понять, мы напишем свой импровизированный майнер для импровизированной криптовалюты HabraCoin.
Читать дальше →

Быстрая, экономная, устойчивая…

Время на прочтение10 мин
Охват и читатели61K

Если вам понадобится алгоритм сортировки массива, который:
  • Работал бы гарантированно за O(N*log(N)) операций (обменов и сравнений);
  • Требовал бы O(1) дополнительной памяти;
  • Был бы устойчивым (то есть, не менял порядок элементов с одинаковыми ключами)

то вам, скорее всего, предложат ограничиться любыми двумя из этих трёх пунктов. И, в зависимости от вашего выбора, вы получите, например, либо сортировку слиянием (требует O(N) дополнительной памяти), либо пирамидальную сортировку (неустойчив), либо сортировку пузырьком (работает за O(N2)). Если вы ослабите требование на память до O(log(N)) («на рекурсию»), то для вас найдётся алгоритм со сложностью O(N*(log(N)2) — довольно малоизвестный, хотя именно его версия используется в реализации метода std::stable_sort().

На вопрос, можно ли добиться выполнения одновременно всех трёх условий, большинство скажет «вряд ли». Википедия о таких алгоритмах не знает. Среди программистов ходят слухи, что вроде бы, что-то такое существует. Некоторые говорят, что есть «устойчивая быстрая сортировка» — но у той реализации, которую я видел, сложность была всё те же O(N*(log(N)2) (по таймеру). И только в одном обсуждении на StackOverflow дали ссылку на статью B-C. Huang и M. A. Langston, Fast Stable Merging and Sorting in Constant Extra Space (1989-1992), в которой описан алгоритм со всеми тремя свойствами.

Так что же это за алгоритм?

Извлечение объектов и фактов из текстов в Яндексе. Лекция для Малого ШАДа

Время на прочтение6 мин
Охват и читатели44K
В докладе рассказывается о том, как мы извлекаем сущности (например, имена людей и географические названия) из текстов и запросов. А также об извлечении фактов, т.е. связей между объектами. Мы рассмотрим несколько подходов к решению этих задач: формулирование правил, составление словарей всевозможных объектов, машинное обучение.

Лекция рассчитана на старшеклассников — студентов Малого ШАДа, но и взрослые смогут с ее помощью восполнить некоторые пробелы.

http://video.yandex.ru/users/e1coyot/view/4/
Конспект лекции

Система поиска плагиата

Время на прочтение20 мин
Охват и читатели72K

Предисловие


Пушкин
Одно время мне везло на всякие странные работы. Например, я чуть было не устроился админом в синагогу. Остановила меня только предчувствие, что меня там как последнего гоя будут заставлять работать по субботам.

Другой вариант тоже был любопытным. Фирма сочиняла эссе и курсовые для американских студентов, которым в лом было писать самим. Уже потом я узнал, что это довольно распространенный и прибыльный бизнес, которому даже придумали собственное название — «paper mill», но сразу такой способ зарабатывания на жизнь показался мне полным сюром. Однако же надо заметить, что интересных задач на этой работе оказалось немало и среди них — самая сложная и хитрая из тех, что я делал за свою карьеру, и которой можно потом с гордостью рассказывать детям.

Формулировка ее была очень проста. Сочинители курсовых — удаленные работники, очень часто — арабы и негры, для которых английский язык был неродным, и ленивы они были ничуть не меньше самих студентов. Нередко они шли по пути наименьшего сопротивления и вместо написания оригинальной работы тупо передирали ее из Интернета, целиком или частями. Соответственно, надо было найти источник (или источники), сравнить, как-то определить процент сплагиаченности и передать собранные сведения для уличения нерадивых.

Дело несколько облегчалось языком курсовых — он был исключительно английским, без падежей и сложных флективных форм; и сильно усложнялось тем, что непонятно было, с какой стороны вообще за это дело браться.

В качестве языка реализации был выбран Перл, что оказалось очень удачным. Ни на каком статическом компилируемом языке с их ригидностью и тормознутостью запуска решить эту задачу вообще было невозможно. Переписать готовое решение можно, а придти к нему путем многочисленных проб — никак нельзя. Ну и плюс куча отличных обкатанных библиотек.
Читать дальше →

Глупая сортировка и некоторые другие, поумнее

Время на прочтение4 мин
Охват и читатели102K

В прошлой статье мы оттолкнулись от так называемой глупой сортировки и путём нехитрых метаморфоз получили всем известную пузырьковую сортировку. Трансформируя последнюю пришли к целому вороху обменных способов упорядочивания массивов. Один из которых, между прочим, на структурах до нескольких тысяч элементов, даже работает быстрее чем быстрая сортировка.

Сегодня мы снова возьмём за основу stupid sort и внесём в неё другое маленькое, но существенное изменение. В результате получим совершенного другой эволюционный ряд сортировочных алгоритмов.

image: эволюция

Другое ответвление глупой сортировки

Направленное освещение и затенение в 2D-пространстве

Время на прочтение8 мин
Охват и читатели49K

Добрый день, Хабравчане!
Хотелось бы рассказать об одном из способов отрисовки освещения и затенения в 2D-пространстве с учетом геометрии сцены. Мне очень нравится реализация освещения в Gish и Super MeatBoy, хотя в митбое его можно разглядеть только на динамичных уровнях с разрушающимися или перемещающимися платформами, а в Гише оно повсеместно. Освещение в таких играх мне кажется таким «тёплым», ламповым, что непременно хотелось нечто подобное реализовать самому. И вот, что из этого вышло.
Читать дальше →

Вклад авторов