Как стать автором
Поиск
Написать публикацию
Обновить
106.18

Big Data *

Большие данные и всё о них

Сначала показывать
Порог рейтинга
Уровень сложности

12 инструментов, о которых необходимо знать каждому программисту, работающему с Big Data

Время на прочтение5 мин
Количество просмотров35K
Проектируете ли вы систему для анализа Big Data или просто пытаетесь собирать и обрабатывать данные своих мобильных приложений, вам никак не обойтись без качественных инструментов для аналитики. Хорошей новостью является то, что в данный момент множество компаний выпускают на рынок инструменты, учитывающие потребности разработчиков и соответствующие их навыкам.
Читать дальше →

MapReduce 2.0. Какой он современный цифровой слон?

Время на прочтение10 мин
Количество просмотров29K


Если ты ИТшник, то нельзя просто так взять и выйти на работу 2-го января: пересмотреть 3-ий сезон битвы экстрасенсов или запись программы «Гордон» на НТВ (дело умственных способностей вкуса).
Нельзя потому, что у других сотрудников обязательно будут для тебя подарки: у секретарши закончился кофе, у МП — закончились дедлайны, а у администратора баз данных — амнезия память.
Оказалось, что инженеры из команды Hadoop тоже любят побаловать друг друга новогодними сюрпризами.

2008


2 января. Упуская подробное описание эмоционально-психологического состояния лиц, участвующих в описанных ниже событиях, сразу перейду к факту: поставлен таск MAPREDUCE-279 «Map-Reduce 2.0». Оставив шутки про число, обращу внимание, что до 1-ой стабильной версии Hadoop остается чуть менее 4 лет.

За это время проект Hadoop пройдет эволюцию из маленького инновационного снежка, запущенного в 2005, в большой снежный com ком, надвигающийся на ИТ, в 2012.
Ниже мы предпримем попытку разобраться, какое же значение январский таск MAPREDUCE-279 играл (и, уверен, еще сыграет в 2013) в эволюции платформы Hadoop.
...

Teradata – СУБД, параллельная от рождения

Время на прочтение5 мин
Количество просмотров37K
Приветствуем, уважаемые Хабравчане. Последнее время на Хабре стало мелькать название компании Teradata в тех или иных вопросах. И, увидев возможный интерес, мы решили рассказать немного о том, что же такое СУБД Teradata, от первого лица. Мы планируем подготовить небольшую серию статей о самых интересных, на наш взгляд, технических особенностях СУБД и работы с ней. Если у вас есть опыт работы с Teradata или в вашей компании используется наша платформа и у вас есть вопросы – подкидывайте их, и мы либо ответим на них в комментариях, либо подготовим соответствующую полноценную статью. А начнем с небольшого обзора. Для знакомства, так сказать.
Читать дальше →

Что такое In-Memory Data Grid

Время на прочтение5 мин
Количество просмотров68K
Обработка данных in-memory является довольно широко обсуждаемой темой в последнее время. Многие компании, которые в прошлом не стали бы рассматривать использование in-memory технологий из-за высокой стоимости, сейчас перестраивают архитектуру своих информационных систем, чтобы использовать преимущества быстрой транзакционной обработки данных, предлагаемых данными решениями. Это является следствием стремительного падения стоимости оперативной памяти (RAM), в результате чего становится возможным хранение всего набора операционных данных в памяти, увеличивая скорость их обработки более чем в 1000 раз. In-Memory Compute Grid и In-Memory Data Grid продукты предоставляют необходимые инструменты для построения таких решений.

Задача In-Memory Data Grid (IMDG) — обеспечить сверхвысокую доступность данных посредством хранения их в оперативной памяти в распределённом состоянии. Современные IMDG способны удовлетворить большинство требований к обработке больших массивов данных.

Упрощенно, IMDG — это распределённое хранилище объектов, схожее по интерфейсу с обычной многопоточной хэш-таблицей. Вы храните объекты по ключам. Но, в отличие от традиционных систем, в которых ключи и значения ограничены типами данных «массив байт» и «строка», в IMDG Вы можете использовать любой объект из Вашей бизнес-модели в качестве ключа или значения. Это значительно повышет гибкость, позволяя Вам хранить в Data Grid в точности тот объект, с которым работает Ваша бизнес-логика, без дополнительной сериализации/де-сериализации, которую требуют альтернативные технологии. Это также упрощает использование Вашего Data Grid-а, поскольку в большинстве случаев Вы можете работать с распределённым хранилищем данных как с обычной хэш-таблицей. Возможность работать с объектами из бизнес-модели напрямую — одно из основных отличий IMDG от In-Memory баз данных (IMDB). В последнем случае пользователи всё ещё вынуждены осуществлять объектно-реляционное отображение (Object-To-Relational Mapping), которое, как правило, приводит к значительному снижению производительности.
Читать дальше →

Эластичный MapReduce. Распределенная реализация

Время на прочтение8 мин
Количество просмотров9.3K
Так случилось, что первый посмотренный мною фильм с упоминанием слова «суперкомпьютер» был Терминатор. Но, как ни странно, моя (тогда еще) не сформировавшаяся психика не посчитала скайнет мировым злом, списав агрессивное поведение первого в мире ИИ на недостаточное покрытие юнит тестами.

На тот момент у меня был ZX Spectrum (чьих 128 Kb явно не хватало на запуск чего-то похожего на ИИ) и много (думаю лет 10) свободного времени. Благодаря последнему факту, я благополучно дождался эры виртуализации. Можно было снять хоть 10K VPS, установить между ними канал связи и начинать создавать ИИ. Но мне хотелось заниматься программированием, а не администрированием/конфигурацией grid-системы, и я разумно начал ждать, когда вычислительные ресурсы начнут предоставляться как сервис.

Моей радости не было конца, когда появились облачные сервисы. Но радость длилась недолго: стало понятно, что пока прямые коммуникации между отдельными вычислительными инстансами – это фантастика код, который нужно писать самому (то есть с большой вероятностью он работать не будет). Попереживав пару лет по этому поводу, я (мы все) дождался Hadoop, сначала «on-premises», а потом и эластичного «on-demand». Но и там, как оказалось, не всё так эластично гладко
Читать дальше →

Стоит ли платить за Apache Hadoop?

Время на прочтение9 мин
Количество просмотров31K


В 2010 году Apache Hadoop, MapReduce и ассоциированные с ними технологии привели к распространению нового явления в сфере информационных технологий, названного «большими данными» или «Big Data». Понимание того, что из себя представляет платформа Apache Hadoop, зачем она нужна и для чего её можно использовать потихоньку проникает в умы специалистов по всему миру. Зарожденный, как идея одного человека, и быстро выросший до промышленных масштабов, Apache Hadoop стал одной из самых широко обсуждаемых платформ для распределенных вычислений, а также платформой для хранения неструктурированной или слабо структурированной информации. В этой статье я хотел бы подробнее остановиться на самой платформе Apache Hadoop и рассмотреть коммерческие реализации, предоставляемые сторонними компаниями, и их отличия от свободно распространяемой версии Apache Hadoop.
Читать дальше →

Коллаборативная фильтрация

Время на прочтение6 мин
Количество просмотров73K
В современном мире часто приходится сталкиваться с проблемой рекомендации товаров или услуг пользователям какой-либо информационной системы. В старые времена для формирования рекомендаций обходились сводкой наиболее популярных продуктов: это можно наблюдать и сейчас, открыв тот же Google Play. Но со временем такие рекомендации стали вытесняться таргетированными (целевыми) предложениями: пользователям рекомендуются не просто популярные продукты, а те продукты, которые наверняка понравятся именно им. Не так давно компания Netflix проводила конкурс с призовым фондом в 1 миллион долларов, задачей которого стояло улучшение алгоритма рекомендации фильмов (подробнее). Как же работают подобные алгоритмы?

В данной статье рассматривается алгоритм коллаборативной фильтрации по схожести пользователей, определяемой с использованием косинусной меры, а также его реализация на python.


Читать дальше →

Мифология Data Science

Время на прочтение6 мин
Количество просмотров23K


The future belongs to the companies and people that turn data into products

Человечество никогда не стояло на месте – суровый закон выживания постоянно заставлял его двигаться вперед. В истории развития человечества революции происходили всегда – одно общество сменялось другим, а устаревшие технологии заменялись более прогрессивными. Последняя информационная революция связана с появлением персональных компьютеров в 80-е годы ХХ века.
Читать дальше →
12 ...
92

Вклад авторов