Как стать автором
Поиск
Написать публикацию
Обновить
112.89

Big Data *

Большие данные и всё о них

Сначала показывать
Порог рейтинга
Уровень сложности

Проблемы БД или почему большой продакшн спасут только массовые расстрелы запросов

Уровень сложностиПростой
Время на прочтение13 мин
Количество просмотров8K

За счёт правильных, даже необязательно новых, а просто верно выбранных архитектурных подходов можно заставить работать не один конкретный запрос, а тысячу или даже  миллион. Это становится краеугольным камнем, потому что объёмы данных растут с такой скоростью, которую мы даже представить себе не могли ещё пять лет назад.

Привет, Хабр! Именно так считает наш сегодняшний гость – Дмитрий Немчин, руководитель направления эксплуатации инфраструктуры данных в Т-банке и по совместительству член программного комитета Data Internals, профессиональной конференции
по инженерии, базам и системам хранения и обработки данных.

В беседе Дмитрий рассказал о своём пути в данные и программный комитет конференции, поделился интересными кейсами и проблемами, связанными с ростом объёмов данных и необходимостью управления ресурсами. А также объяснил, как дата-инженеру остаться востребованным в будущем, где ИИ может проникнуть абсолютно во все сферы жизни.

Читать далее

Как мы храним 20000+ метрик и миллиарды комбинаций разрезов в одной таблице

Уровень сложностиСредний
Время на прочтение22 мин
Количество просмотров15K

Привет! Меня зовут Влад Божьев, я старший разработчик юнита АБ-тестирования Авито. Один из наших ключевых инструментов – M42, сервис для визуализации метрик. Он позволяет быстро проверять гипотезы, анализировать отклонения и оценивать инициативы.

В этой статье мы с вами погружаемся в самое сердце M42 и разбираем, как же там хранятся отчеты по метрикам. Это не просто рассказ, это почти детективная история о том, как мы искали оптимальное решение.

В нашем семантическом слое данных больше  20 000 метрик, и есть десятки разрезов для каждой из них. Под катом рассказываю, как мы храним терабайты данных и автоматизируем добавление новых разрезов в отчёт M42.

Читать далее

Массивы вместо self-join: как писать быстрые запросы в ClickHouse

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров4.6K

Привет, Хабр! Я — Максим Шитилов, продуктовый аналитик в каршеринг-сервисе Ситидрайв. Каждый день мы обрабатываем большие объёмы данных, и ClickHouse — один из наших ключевых инструментов. Если вы когда-либо пытались связать события с временными интервалами или рассчитать метрику за определённое окно после события, то наверняка сталкивались с типичной конструкцией на self-join. Вроде бы работает, но запрос становится громоздким, ресурсоёмким и плохо масштабируется.

В этой статье я расскажу, как решать такие задачи проще и эффективнее — с помощью массивов, arrayFilter и arrayMap. Покажу, как отказаться от self-join’ов без потери точности, ускорить обработку и упростить код. Примеры — из реальных бизнес-кейсов: телеметрия, аренды, GMV и события, которые нужно связать между собой по времени. Так как схожих решений на просторах интернета я не нашёл, предлагаю назвать этот подход «Array Join Pattern». Если метод окажется полезным для сообщества, то такой паттерн легко будет найти другим аналитикам и девам.

Читать далее

Долгожданный релиз Airflow 3

Уровень сложностиСредний
Время на прочтение11 мин
Количество просмотров8.1K

Привет, Хабр! Я Георгий Новожилов, инженер данных в «ДАР» (ГК «КОРУС Консалтинг»).

В моём стеке и стеке моих коллег Airflow, можно сказать, незаменим. Он помогает нам планировать, запускать и отслеживать сотни задач обработки данных, которые крутятся в кластере каждый день.

22 апреля 2025 года компания Apache выпустила новую версию своего оркестратора, которая была в разработке последние 4 года. Среди ключевых изменений — новый интерфейс, обновлённая и защищённая архитектура, а также стабильный интерфейс разработки.

В этой статье предлагаю рассмотреть, какие ещё нововведения нам привезли в масштабном обновлении Apache Airflow 3.0.0.

Читать далее

Современные подходы к матчингу товаров с использованием LLM. Опыт в e-commerce

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров3K

Привет, Хабр! Меня зовут Виталий Кулиев и я Data Science Tech Lead из Wildberries. На конференции HighLoad++ 2024 поделился опытом своей команды в решении задачи матчинга товаров с помощью больших языковых (LLM) и визуально-языковых (VLM) моделей. 

Читать далее

Как я удалил clickstream, но его восстановили из небытия

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров2.5K

Всем привет! Я Дмитрий Немчин из Т-Банка. Расскажу не очень успешную историю о том как я удалил данные и что из этого вышло.

В ИТ я больше 12 лет, начинал DBA и разработчиком в кровавом энтепрайзе с Oracle. В 2015 году познакомился с Greenplum в Т, да так тут и остался. С 2017 года стал лидить команду, потом все чуть усложнилось и команда стала не одна.  Возможно, вы меня могли видеть как организатора Greenplum-митапов в России. 

Но команда командой, менеджмент менеджментом, а руки чешутся..

Читать далее

Оптимизация Spark-приложений: шаг за шагом от базовых техник до продвинутых приёмов

Уровень сложностиСредний
Время на прочтение17 мин
Количество просмотров4.7K

В этой статье мы делимся опытом оптимизации Spark-кода на реальных задачах: рассказываем, как с помощью ручного и автоматического репартицирования ускорить обработку данных, как правильно настраивать оконные функции и запускать множество небольших Spark-приложений внутри одного процесса для экономии ресурсов.

Привет, Хабр! Меня зовут Александр Маркачев и я — Data Engineer команды Голосовой Антифрод в билайн. Расскажу, как борьба с мошенниками может обернуться личным вызовом.

Все техники сопровождаются объяснениями, примерами и рекомендациями для самостоятельного повторения.

Читать далее

Путь в AI: от студента до инженера, исследователя или разработчика

Уровень сложностиПростой
Время на прочтение8 мин
Количество просмотров3.6K

Привет, Хабр! Меня зовут Анна Щеникова. Я работаю AI-инженером в Центре RnD МТС Web Services и параллельно лидирую магистерскую программу «Исследования и предпринимательство в искусственном интеллекте» ВШЭ. В МТС занимаюсь всем, что связано с моделями: вместе с коллегами тестирую гипотезы про агентов и мультимодельные подходы.

Переход от студенческой жизни к профессиональной деятельности — важный и сложный этап. Это первые серьезные шаги в карьере, первое понимание, как применить полученные знания в реальном бизнесе.

Я прошла этот путь несколько раз: сначала сама, а потом помогая магистрантам в ВШЭ. Так я увидела, какие ключевые точки нужно проработать, чтобы комфортно и весело перейти от теории к реальным бизнес-задачам. В этом посте расскажу о своем опыте перехода к полноценной работе и поделюсь видением того, что будет актуальным в сфере AI в ближайшем будущем. Надеюсь, это поможет кому-нибудь правильно спланировать карьеру.

Читать далее

Как научить ИИ обслуживать клиентов не хуже человека?

Уровень сложностиПростой
Время на прочтение12 мин
Количество просмотров3.1K

Новость о мощи ChatGPT прогремела уже более двух лет назад, однако крупные компании ещё до сих пор полностью не автоматизировали поддержку клиентов. В этой статье разберём на пальцах, какие данные и надстройки нужны для больших языковых моделей, как сделать так, чтобы внедрение было экономически целесообразным и, наконец, что делать с чат-ботами прошлого поколения.

Читать далее

Сравниваем быстродействие новой функциональности ClickHouse по поиску ближайших векторов с другими решениями

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров4.7K

Всем привет! Меня зовут Диана Бутько, я студентка 3 курса, изучаю информационные системы и программирование. В InfoWatch я пришла на практику, и одной из моих задач стал сравнительный анализ различных методов поиска похожих векторов. Это один из ключевых аспектов машинного обучения и анализа данных, используемых в рекомендательных системах, кластеризации, семантическом поиске и других областях. Но чем больше объем данных, тем важнее становится выбор инструментов: полный перебор векторов требует больших вычислительных ресурсов, а в других алгоритмах порой необходимо балансировать между точностью и скоростью поиска.

В этой статье я сравниваю пять методов поиска похожих векторов:
— полный перебор по евклидову расстоянию с реализацией в Python;
— FAISS с индексами IndexFlatL2 (полный перебор, евклидово расстояние) и IndexIVFFlat (сегментирование по ячейкам, евклидово расстояние);
— векторный поиск в ClickHouse с индексом HNSW и метриками расстояния L2Distance (евклидово расстояние) и cosineDistance (косинусное сходство).

Читать далее

Как мы разработали LLM-модель, которая генерирует описания товаров для пользователей Авито

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров15K

Привет! Я Сергей Кляхандлер, senior DS-инженер в команде LLM Авито

В статье рассказываю, как мы разработали ML-модель, которая автоматически генерирует описания для объявлений из категории Одежда и Обувь. Подробно расписываю, откуда мы брали данные для обучения, какую архитектуру использовали и как тренировали модель. А в конце говорю про важную часть работы — фейлы.

Статья будет полезна DS-инженерам, которые работают с мультимодальными LLM-моделями.

Читать далее

Как мы в PIX BI научились выжимать максимум из данных с помощью таблиц

Уровень сложностиПростой
Время на прочтение8 мин
Количество просмотров2.5K

Как мы в PIX BI приручили таблицы, чтобы выжимать максимум из данных

Когда мы думаем о таблицах, сразу приходит на ум Excel — этот старший брат всех электронных таблиц, который, несмотря на свои достоинства, часто становится… Но — давайте не будем подсвечивать ничьи недостатки, а лучше поговорим о достоинствах! Таблицы смело можно назвать визуализацией данных еще со времен древних цивилизаций. Их использовали для учета всего — от ракушек на базаре до золотых статуй в храмах. Современные аналитики хорошо знают истинную ценность таблиц и доверяют им.

Когда мы накапливаем достаточно опыта работы с таблицами в Excel, когда исследователь, сидящий в каждом аналитике, топает ногами и требует расширения его контроля над данными, — вот тут и начинается наше путешествие в мир BI-систем.

Да, работать с таблицами в self-service системах, таких как PIX BI, удобнее, чем в Excel. Почему? Во-первых, это просто. Все элементы интерфейса интуитивно понятны. Не нужно фантазировать с формулами или изображать из себя мега-специалиста, чтобы увидеть, как растут ваши продажи. Все происходит наглядно, быстро и без лишних нервов.

Во-вторых, BI-системы предлагают интерактивность: можно легко настраивать фильтры, сортировки и даже комбинировать данные без риска испортить всю таблицу. Вся информация собирается в одном месте, как старые, дорогие сердцу игрушки — с уютом и любовью!

Итак, в этой статье я подробнее разберу, как работать с таблицами в BI и какие фишки можно использовать. Конечно, на примере продукта, который мы создаем — PIX BI. Открываем двери нового, яркого мира аналитики!

Читать далее

Full-stack в аналитике: почему это будущее Data Science?

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров6.5K

Привет.

Представьте: вы запилили нейросеть, которая определяет котиков на фото с точностью 99.9% (оставшиеся 0.1% — это когда хомяк притворяется котом). Воодушевлённый результатом, бежите к руководству — а там оказывается, что:

Читать далее

Ближайшие события

Секреты Spark в Arenadata Hadoop: как мы ускорили построение витрин для задач ML

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров1.7K

Привет, Хабр! Я Дмитрий Жихарев, CPO Платформы искусственного интеллекта RAISA в Лаборатории ИИ РСХБ-Интех. В этой статье я и архитектор нашей платформы Александр Рындин @aryndin9999расскажем о том, как мы построили взаимодействие Платформы ИИ и Озера данных для работы с витринами данных моделей машинного обучения с использованием Spark.

Читать далее

Со скоростью кометы: ускоряем Spark без переписывания кода

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров3.5K

Привет, Хабр! Меня зовут Лев Маковеев. Я младший инженер по обработке данных в компании «Криптонит». В этой статье хочу поделиться с вами результатами небольшого исследования, в ходе которого мы протестировали ускоритель запросов Apache DataFusion Comet и пришли к довольно впечатляющим результатам. Забегая вперёд, отмечу, что в отдельных тестах ускорение было более чем десятикратным!

Читать далее

Self-Service BI: как сделать, чтобы он полетел

Уровень сложностиПростой
Время на прочтение29 мин
Количество просмотров2.3K

«Спасение утопающих — дело рук самих утопающих». Иногда это звучит не так уж и плохо.

Привет, Хабр! Меня зовут Юлий Гольдберг, работаю в GlowByte (занимаюсь платформами данных, BI, аналитическими решениями больше 20 лет). Сегодня хочу поделиться некоторыми наблюдениями о том, про что нужно не забывать, чтобы Self‑Service BI стал реальным драйвером развития корпоративной культуры работы с данными, а не остался благим пожеланием.

Читать далее

Ускорить Pandas в 60 раз: проверяем лайфхаки из интернета на реальном проекте и обкладываемся бенчмарками

Уровень сложностиПростой
Время на прочтение8 мин
Количество просмотров8.6K

Привет! Если после заголовка вы решили, что это очередная статья в стиле «Топ-10 способов ускорить Pandas», то не торопитесь с выводами. Вместо топов и подборок предлагаю взглянуть на бенчмарки скорости и потребления памяти в зависимости от характеристик датафрейма и убедиться, что часть советов из статей по ускорению могут оказаться даже вредными. Разберём, какой из способов ускорения нужно пробовать в разных ситуациях, как это зависит от размера датафрейма и как ведёт себя в реальном проекте.

Читать далее

Анализ данных: от EDA до Tinder-битвы графиков

Время на прочтение6 мин
Количество просмотров1.7K

Всем привет! Меня зовут Максим Шаланкин, и я веду несколько образовательных блоков в нашей школе аналитиков данных в МТС. Сегодня я хочу рассказать, как мы организовали необычное занятие по анализу данных: в нем студенты соревновались за звание лучшего в игре, напоминающей Tinder, но для графиков предварительного анализа (EDA). Эта активность не только помогла освоить ключевые навыки визуализации, но и сделала процесс обучения увлекательным и запоминающимся, демонстрируя практическую значимость качественного анализа данных.

В этом материале я расскажу, как мы вообще обучаем EDA, какие нюансы есть в процессе и как мы делаем его интересным с помощью игры. История и графики победителей под катом.

Читать далее

YTsaurus — два года в опенсорсе: чего мы достигли и куда движемся

Время на прочтение7 мин
Количество просмотров4.1K

20 марта мы провели митап для пользователей YTsaurus — главной платформы для хранения и обработки больших данных в Яндексе от разработчиков из Yandex Infrastructure, которая уже успела зарекомендовать себя за пределами компании.

Этот текст во многом основан на моем выступлении на митапе: я кратко расскажу, чего мы достигли, какие улучшения внесли и что ждёт пользователей в ближайшем будущем.

Читать далее

Стриминг Apache Flink из MongoDB в PostgreSQL на Python

Время на прочтение11 мин
Количество просмотров1.8K

Привет, Хабр! Меня зовут Александр Цай, я ведущий аналитик в МТС Web Services, но на деле занимаюсь всеми вопросами, касающимися DA/DE/BI: выявлением потребностей и сбором требований, проектированием дашбордов и витрин для них, построением и развитием внутреннего хранилища, поиском источников данных, созданием сложных ETL-пайплайнов по их доставке, DQ, проведением аналитики и много чем еще.

В этом материале я расскажу про разворачивание пайплайна по стримингу данных из MongoDB в PostgreSQL с помощью Apache Flink (стримить из Kafka банально, а так заодно пощупаем документоориентированную БД). Делать это мы будем в minikube (kubernetes), а языком программирования для заданий выступит Python. Все описанное в посте выполняется на MacBook с процессором i7.

В интернете, тем более русскоязычном, нет информации о стриминге из MongoDB в Postgres с помощью Flink. Почти все материалы по Flink, которые мне попадались, сводятся к пережевыванию примера WordCount из flink-kubernetes-operator, где на запущенном поде из папки с примерами читается файл и в консоль выводится количество слов в нем. Если спускаться до использования PyFlink, то мы натыкаемся на кастомные образы с Harness SDK и Apache Beam и другие страшные слова. Знакомо?

Так вот, это не наш путь! Данное руководство будет полезно тем, кто такой же извращенец хочет пощупать Flink на родном Python и кто не планирует брать примеры, оторванные от реальности.

Читать далее

Вклад авторов