Начнём с железа

Фреймворк для веб-приложений на Python
Привет! Меня зовут Азат Калмыков, я студент второго курса ОП “Прикладная математика и информатика” Факультета компьютерных наук НИУ ВШЭ и стажёр в отделе мобильной разработки компании ABBYY. В этом материале я расскажу про свой небольшой проект, выполненный в рамках летней стажировки.
Представьте себе небольшой конвейер. По нему едут товары или какие-то детали, на которых важно распознавать текст (возможно, это некий уникальный идентификатор, а может, и что-то более интересное). Хорошим примером будут посылки. Работу конвейера дистанционно контролирует оператор, который отслеживает неполадки и в случае чего решает проблемы. Что может ему в этом помочь? Девайс на платформе Android Things может быть неплохим решением: он мобильный, легко настраивается и может работать через Wi-Fi. Мы решили попробовать использовать технологии ABBYY и узнать, насколько они подходят для таких ситуаций — распознавания текста в потоке на “нестандартных устройствах” из категории Internet of Things. Мы сознательно будем упрощать многие вещи, так как просто строим концепт. Если стало интересно, добро пожаловать под кат.
Наш образовательный портал GeekBrains объявляет о запуске нового курса подготовки веб-разработчиков на Python (Django). Продвинутый курс с углубленным изучением фреймворка Django позволит вам претендовать на должность Full-stack разработчика — специалиста с большим набором компетенций, способного создать веб-приложение с нуля.
Привет, Хабр!
Хочу поделиться опытом написания миграций для postgres и django. Речь в основном пойдёт про postgres, django же здесь хорошо дополняет, так как из коробки имеет автоматическую миграцию схемы данных по изменениям модельки, то есть имеет довольно полный список рабочих операций по изменению схемы. Django можно заменить на любой любимый фрэймворк/библиотеку — подходы скорее всего будут похожи.
Не буду описывать как я к этому пришёл, но сейчас читая документацию ловлю на мысли, что нужно было с большей внимательностью и осознанием делать это раньше, поэтому очень рекомендую.
Перед тем как пойти дальше позволю себе сделать следующие предположения.
Можно разделить логику работы с базой данных большинства приложений на 3 части:
Даунтайм — это состояние, когда часть нашей бизнес логики не доступна/падает/грузится на заметное для пользователя время, предположим это пару секунд.
Отсутствие даунтайма может быть критическим для бизнеса условием, которого любыми усилиями нужно придерживаться.
Каждый из проектов, который перерастает этап прототипа, нуждается в организации логирования. Грамотное логирования решает уйму проблем и помогает понять состояние проекта. На начальном этапе логирование в файл меня устраивало пока проект не разросся и поиск по логам не начал отнимать время.
Решением было создание централизованного лог хранилища с агрегацией логов и поиском. Выбор пал на ELK стек. ELK — сочетание трех OpenSource проектов: ElasticSearch, Logstash и Kibana. ELK хранит логи, строит графики и есть поддержка полнотекстового поиска с фильтрами. В статье описывается процесс настройки ELK стека для хранения логов Django приложения.