Как стать автором
Поиск
Написать публикацию
Обновить
0

Julia *

Высокоуровневый высокопроизводительный язык

Сначала показывать
Порог рейтинга
Уровень сложности

Julia и фазовые портреты динамических систем

Время на прочтение5 мин
Количество просмотров6K


Продолжаем осваивать молодой и перспективный язык общего назначения Julia. Но для начала нам нужна как раз таки сугубо узкая возможность применения — для решения типичных задач физики. Это самая удобная тактика освоения инструмента: чтоб набить руку, будем решать насущные проблемы, постепенно увеличивая сложность и находя способы облегчения своей жизни. Короче, будем решать дифуры и строить графики.

Читать дальше →

Как я с Python на Julia переходил (и зачем)

Время на прочтение7 мин
Количество просмотров20K

Немного предыстории о Python


Python — замечательный язык. Несколько языков я и до него пробовал: Pascal в школе; Си, Си с классами, Си++ — в университете. Последние два (три) привили стойкое отвращение к программированию: вместо решения задачи возишься с аллокациями и деструкторами (страшные слова из прошлого), мыслишь в терминах низкоуровневых примитивов. Мое мнение — Си не подходит для решения учебных и научных задач (во всяком случае, в области математики). Уверен, что мне возразят, но я никому не пытаюсь ничего навязать, просто высказываю своё мнение.

Python стал в своё время откровением. Впервые в жизни я писал на несколько уровней абстракции выше, чем это принято в Си. Расстояние между задачей и кодом сократилось как никогда ранее.

Я бы так наверное всю жизнь и писал бы на Python, если бы не пришлось внезапно реализовывать статистические тесты NIST. Казалось бы, задача очень простая: есть массив длины несколько (>= 10) мегабайт, есть набор тестов, которые надо применить к данному массиву.
Читать дальше →

Графика в Julia. Странные паттерны, отражение треугольника от прямой и построение нормалей сферического кота в вакууме

Время на прочтение5 мин
Количество просмотров12K


Продолжаем знакомство с очень молодым, но невероятно красивым и мощным языком программирования Julia. Шестилетняя бета наконец-таки закончилась, так что теперь можно не бояться изменений синтаксиса. И пока все спорят, хорошо или плохо начинать индексацию с единицы, взбудораженное сообщество активно закопошилось: выходят новые библиотеки, старые обновляются, стартуют серьёзные проекты, и в университетах этому языку активно учат студентов. Так не будем же отставать! Завариваем чай покрепче, потому что этой ночью будем кодить!

Читать дальше →

Julia. Знакомство

Время на прочтение7 мин
Количество просмотров73K

Ода Джулии



Очень трудно передать весь восторг, который сопутствовал запуску первых программ и исправлению первых ошибок с использованием этого языка. Прост и красив как Python, немножко похож на Fortran, удобная работа с массивами и графиками, а также возможность осуществлять лютую оптимизацию и распараллеливание даже для таких чайников, как я мои одногруппники. Можно работать на разных уровнях абстракции: от высокоуровневого программирования с динамической типизацией можно спуститься до ассемблерных команд, то есть, тут вам и питонская общедоступность и скорость выполнения фортрановских считалок. Не могу отделаться от ощущения, что Mathcad, Scilab и даже, прости Господи, C++ начинают в моем сердце уходить на второй план.

Читать дальше →

Кодинг и тестирование kNN в Julia

Время на прочтение5 мин
Количество просмотров4.1K


Новый язык в Data Science. В России Julia довольно редкий язык, хотя за рубежом его используют уже 5 лет (тоже мне, удивили). Источников на русском нет, поэтому я решила сделать показательный пример работы Julia, взятый из одной замечательной книги. Лучший способ выучить язык — начни что-то писать на нем. А чтобы это еще и привлекло внимание, используй machine learning.
Читать дальше →

Видеозапись вебинара «Julia — A fresh approach to numerical computing and data science»

Время на прочтение1 мин
Количество просмотров2.7K


Команда FlyElephant в марте проводила вебинар с со-основателем и CEO в Julia Computing, а также со-автором языка Julia — Viral B. Shah, на тему "Julia — A fresh approach to numerical computing and data science".
Смотреть видеозапись и презентацию

Вебинар: Julia — A fresh approach to numerical computing and data science

Время на прочтение1 мин
Количество просмотров2.1K


Команда FlyElephant приглашает всех на вебинар "Julia — A fresh approach to numerical computing and data science", который проведет со-основатель и CEO в Julia Computing, а также со-автор языка Julia — Viral B. Shah.

Вебинар будет проходить 20 марта в 19:00 (EET) / 9:00 am (PST). Язык — английский.

Все подробности и регистрация здесь

Моделирование кинематики — это не сложно

Время на прочтение5 мин
Количество просмотров13K
Мне давно хочется заняться созданием роботов, но всегда не хватает свободных денег, времени или места. По этому я собрался писать их виртуальные модели!

Мощные инструменты, позволяющие это делать, либо сложно стыкуются со сторонними программами (Modelica), либо проприетарны (Wolfram Mathematica, различные САПР), и я решил делать велосипед на Julia. Потом все наработки можно будет состыковать с сервисами ROS.

Будем считать, что наши роботы двигаются достаточно медленно и их механика находится в состоянии с наименьшей энергией, при ограничениях, заданных конструкцией и сервоприводами. Таким образом нам достаточно решить задачу оптимизации в ограничениях, для чего понадобятся пакеты "JuMP" (для нелинейной оптимизации ему понадобится пакет "Ipopt", который не указан в зависимостях (вместо него можно использовать проприетарные библиотеки, но я хочу ограничится свободными) и должен быть установлен отдельно). Решать дифференциальные уравнения, как в Modelica, мы не будем, хотя для этого есть достаточно развитые пакеты, например "DASSL".

Управлять системой мы будем используя реактивное программирование (библиотеку "Reactive"). Рисовать в «блокноте» (Jupyter), для чего потребуются "IJulia", "Interact" и "Compose". Для удобства еще понадобится "MacroTools".
Для простоты рассмотрим 2D робота, сделанного из веревок и пружин

Pattern matching с помощью макросов

Время на прочтение4 мин
Количество просмотров5.6K
Язык Julia не поддерживает такую технику программирования, хорошо зарекомендовавшую себя в языках Haskell, Prolog, Erlang, Scala, Mathematica, как pattern matching. Но разрешает писать макросы, которые позволяют исправить этот фатальный недостаток. Выглядит это примерно так:
julia> immutable X a end

julia> immutable Y a ; b end

julia> @case(Y(X(9),2),  Y(4,3)-> 55, Y(X(k),2)->1+k)
10

Исходный код доступен на github.
Похожую (но гораздо более развитую и готовую для использования) можно взять здесь, но она слишком большая, что бы разбирать ее как пример в статье.
Макромагия с полным разоблачением

Наследование комбинаторных парсеров на Julia

Время на прочтение7 мин
Количество просмотров6.4K
Комбинаторные (монадические) парсеры достаточно хорошо известны (wikibooks). Они представляют из себя библиотеку маленьких парсеров, которые распознают простые элементы грамматики, и способы объединять несколько парсеров в один (комбинировать — от сюда и название). Монадические они потому что один из способов комбинирования, порождения парсера остатка текста на основе результата разбора начала, удовлетворяет условиям, накладываемым на математический объект «монада». В языке Haskell это позволяет воспользоваться мощным сервисом, предоставляемым языком и библиотеками. В других языках название «монадические» можно смело игнорировать — это не будет мешать их реализации и использованию, включая упомянутую выше операцию «bind».

Проще всего комбинаторные парсеры реализуются в языках с поддержкой замыканий, но можно воспользоваться и классическим ООП (пример описан Rebecca Parsons в книге Мартина Фаулера «Предметно-ориентированные языки»).
К преимуществам комбинаторных парсеров относится простота использования (запись на языке программирования практически не отличается от обычного описания грамматики), независимость от препроцессора (как yacc/bison, happy или ocamlyacc), возможность реализовать некоторые элементы, плохо укладывающиеся в контекстно-свободную грамматику, прямо на языке программирования общего назначения.

К недостаткам — сложность составления сообщений об ошибке, неспособность работать с леворекурсивной грамматикой (приводит к зацикливанию), а так же то, что очень легко сделать этот парсер не эффективным по быстродействию и памяти. (Одна из причин — компилятор не может произвести оптимизацию в терминах грамматики, так как работает на уровне языка программирования. Но есть и другие тонкости, требующие внимания, если требуется эффективность.)
Как альтернативу можно рассмотреть реализации в виде макросов (например OCaml streams parsers). В Perl6 поддержка грамматик встроена в язык.

Наследование

Персер конкретного языка состоит из множества более специализированных парсеров, ссылающихся друг на друга. В этом отношении парсеры напоминают методы некого объекта. Возникает желание порождать парсеры новых версий языков, подменяя отдельные подпарсеры (как это делается в паттерне проектирования «шаблонный метод» из ООП). Для экспериментов с этим подходом (а так же в порядке изучения очередного языка) я выбрал язык Julia — динамически-типизированном с особым подходом к наследованию (подобному CLOS из Common Lisp и R).
В отличие от обычных комбинаторных парсеров, подход с наследованием является экспериментальным (хотя в некотором виде поддерживается библиотекой макросов OCaml и языком Perl6). Пока он порождает не очень читабельный код. Исходный код доступен на Github.
Читать дальше →

Почему я делаю ставку на Julia

Время на прочтение15 мин
Количество просмотров48K
imageСовсем о Julia не говорим тут. Один пост двухлетней давности от Ализара, и всё. Исправляем ситуацию.

Используя разные языки программирования, я постоянно сталкиваюсь с одной и той же проблемой — их создатели без ума от вещей, которые меня практически не волнуют: безопасность, системы типов, гомоиконность и так далее. Всё это очень круто, не спорю, но когда я вожусь по вечерам над своим очередным проектом, мне важна только его работоспособность и производительность. Код — это всего лишь средство для достижения некоторой цели, а его «выразительность» для меня важна так же, как и «выразительность» какого-нибудь каталитического конвертера.

Такой подход к делу некоторые презрительно называют ковбойским программированием. Но мне кажется, что это не самый правильный образ — ковбой вынужден периодически устраивать привалы из-за физических ограничений своего коня. Давайте лучше представим одержимого учёного, эдакого профессора, который неделями пропадает в лаборатории, а потом выходит оттуда изнурённый, с затуманенным взором, со своим новым хитроумным изобретением, которое разваливается при первом же запуске.
Читать дальше →

Почему мы создали Джулию, новый ЯП для технических вычислений

Время на прочтение3 мин
Количество просмотров10K
Если вкратце, потому что мы жадные.

Мы продвинутые пользователи Matlab. Некоторые из нас хакеры Lisp. Некоторые питонисты, другие рубисты, есть ещё Perl-хакеры. Среди нас есть такие, кто использовал Mathematica раньше, чем у него начали расти волосы на лице. Есть и такие, у кого до сих пор не выросли. Мы построили больше графиков на R, чем способен любой здравомыслящий человек. C — это язык, который мы бы взяли на необитаемый остров.

Мы любим все эти языки; они прекрасны и могучи. Для той работы, которую мы делаем — научные вычисления, машинное обучение, дата-майнинг, крупномасштабная линейная алгебра, распределённые и параллельные вычисления — каждый идеально подходит в определённом аспекте, но ужасен в других. Каждый из них — это компромисс.

Мы жадные: мы хотим больше.
Читать дальше →