Как стать автором
Поиск
Написать публикацию
Обновить
768.4

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Нейропластичность в искусственных нейронных сетях

Время на прочтение17 мин
Количество просмотров53K
Привет, Хабр, давно не виделись. В этом посте мне хотелось бы рассказать о таком относительно новом понятии в машинном обучении, как transfer learning. Так как я не нашел какого-либо устоявшегося перевода этого термина, то и в названии поста фигурирует хоть и другой, но близкий по смыслу термин, который как бы является биологической предпосылкой к формализации теории передачи знаний от одной модели к другой. Итак, план такой: для начала рассмотрим биологические предпосылки; после коснемся отличия transfer learning от очень похожей идеи предобучения глубокой нейронной сети; а в конце обсудим реальную задачу семантического хеширования изображений. Для этого мы не будем скромничать и возьмем глубокую (19 слоев) сверточную нейросеть победителей конкурса imagenet 2014 года в разделе «локализация и классификация» (Visual Geometry Group, University of Oxford), сделаем ей небольшую трепанацию, извлечем часть слоев и используем их в своих целях. Поехали.
Читать дальше →

Необычные модели Playboy, или про обнаружение выбросов в данных c помощью Scikit-learn

Время на прочтение7 мин
Количество просмотров129K
Мотивированный статьей пользователя BubaVV про предсказание веса модели Playboy по ее формам и росту, автор решил углубиться if you know what I mean в эту будоражащую кровь тему исследования и в тех же данных найти выбросы, то есть особо сисястые модели, выделяющиеся на фоне других своими формами, ростом или весом. А на фоне этой разминки чувства юмора заодно немного рассказать начинающим исследователям данных про обнаружение выбросов (outlier detection) и аномалий (anomaly detection) в данных с помощью реализации одноклассовой машины опорных векторов (One-class Support Vector Machine) в библиотеке Scikit-learn, написанной на языке Python.
Читать дальше →

Шоппинг с распознаванием образов

Время на прочтение1 мин
Количество просмотров3.3K
Новый интернет-магазин Modista собирает образцы товаров от сотен ритейлеров и забивает в единую базу данных (163 000 товаров по четырём категориям: обувь, часы, сумочки и очки). Далее на этой базе запускают движок распознавания образов с элементами самообучения.

Поиск покупки осуществляется исключительно через визуальный интерфейс. Щёлкаете по наиболее понравившемуся товару — и таблица перестраивается под новый шаблон. По горизонтали — подобие по форме, по вертикали — подобие по цвету.

Можно предположить, что похожие интерфейсы в будущем станут стандартным элементом любого интернет-магазина.


Читать дальше →
12 ...
30

Вклад авторов