Как стать автором
Поиск
Написать публикацию
Обновить
762.35

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Как программист машину покупал

Время на прочтение9 мин
Количество просмотров122K
Недавно я озадачился поиском б.у. автомобиля, взамен только что проданного, и, как это обычно бывает, на эту роль претендовали несколько конкурентов.

Как известно, для покупки авто на территории РФ существует несколько крупных авторитетных сайтов (auto.ru, drom.ru, avito.ru), поиску на которых я и отдал предпочтение. Моим требованиям отвечали сотни, а для некоторых моделей и тысячи, автомобилей, с перечисленных выше сайтов. Помимо того, что искать на нескольких ресурсах неудобно, так еще, прежде чем ехать смотреть авто “вживую”, я хотел бы отобрать выгодные (цена которых относительно рынка занижена) предложения по априорной информации которую предоставляет каждый из ресурсов. Я, конечно, очень хотел решить несколько переопределенных систем алгебраических уравнений (возможно и нелинейных) высокой размерности вручную, но пересилил себя, и решил этот процесс автоматизировать.
image
Читать дальше →

FizzBuzz на TensorFlow

Время на прочтение4 мин
Количество просмотров53K

интервьюер: Приветствую, хотите кофе или что-нибудь еще? Нужен перерыв?


я: Нет, кажется я уже выпил достаточно кофе!


интервьюер: Отлично, отлично. Как вы относитесь к написанию кода на доске?


я: Я только так код и пишу!


интервьюер: ...


я: Это была шутка.


интервьюер: OK, итак, вам знакома задача "fizz buzz"?


я: ...


интервьюер: Это было да или нет?


я: Это что-то вроде "Не могу поверить, что вы меня об этом спрашиваете."


интервьюер: OK, значит, нужно напечатать числа от 1 до 100, только если число делится нацело на 3, напечатать слово "fizz", если на 5 — "buzz", а если делится на 15, то — "fizzbuzz".


я: Я знаю эту задачу.


интервьюер: Отлично, кандидаты, которые не могут пройти эту задачу, у нас не сильно уживаются.


я: ...


интервьюер: Вот маркер и губка.


я: [задумался на пару минут]


интервьюер: Вам нужна помощь, чтобы начать?


я: Нет, нет, все в порядке. Итак, начнем с пары стандартных импортов:


import numpy as np
import tensorflow as tf

интервьюер: Эм, вы же правильно поняли проблему в fizzbuzz, верно?


я: Так точно. Давайте обсудим модели. Я думаю тут подойдет простой многослойный перцептрон с одним скрытым слоем.

Читать дальше →

Совсем не нейронные сети

Время на прочтение9 мин
Количество просмотров49K


Недавно ZlodeiBaal писал о достижениях в сверточных нейронных сетях (CNN) (и, кстати, тут же успешно настроил и обучил сеть для поиска области автомобильного номера).
А я хочу рассказать про принципиально иную и, наверное, более сложную модель, которую сейчас развивает Алексей Редозубов (@AlexeyR), и про то, как мы, конечно проигнорировав некоторые важные элементы, и ее применили для распознавания автомобильных регистрационных знаков!

В статье несколько упрощенно напомню о некоторых моментах этой концепции и покажу, как оно сработало в нашей задаче.
Читать дальше →

Байесовская нейронная сеть — теперь апельсиновая (часть 2)

Время на прочтение16 мин
Количество просмотров38K
Как вы думаете, чего в апельсине больше — кожуры, или, хм, апельсина?



Предлагаю, если есть возможность, пойти на кухню, взять апельсин, очистить и проверить. Если лень или нет под рукой — воспользуемся скучной математикой: объем шара мы помним из школы. Пусть, скажем, толщина кожуры равна от радиуса, тогда , ; вычтем одно из другого, поделим объем кожуры на объем апельсина… получается, что кожуры что-то около 16%. Не так уж мало, кстати.

Как насчет апельсина в тысячемерном пространстве?

Пойти на кухню на этот раз не получится; подозреваю, что формулу наизусть тоже не все знают, но Википедия нам в помощь. Повторяем аналогичные вычисления, и с интересом обнаруживаем, что:

  • во-первых, в тысячемерном гиперапельсине кожуры больше, чем мякоти
  • а во-вторых, ее больше примерно в 246993291800602563115535632700000000000000 раз

То есть, каким бы странным и противоречивым это ни казалось, но почти весь объем гиперапельсина содержится в ничтожно тонком слое прямо под его поверхностью.

Начнем с этого, пожалуй.

Читать дальше →

AlphaGo на пальцах

Время на прочтение5 мин
Количество просмотров62K
Итак, пока наши новые повелители отдыхают, давайте я попробую рассказать как работает AlphaGo. Пост подразумевает некоторое знакомство читателя с предметом — нужно знать, чем отличается Fan Hui от Lee Sedol, и поверхностно представлять, как работают нейросети.
Читать дальше →

Байесовская нейронная сеть — потому что а почему бы и нет, черт возьми (часть 1)

Время на прочтение16 мин
Количество просмотров94K
То, о чем я попытаюсь сейчас рассказать, выглядит как настоящая магия.

Если вы что-то знали о нейронных сетях до этого — забудьте это и не вспоминайте, как страшный сон.
Если вы не знали ничего — вам же легче, полпути уже пройдено.
Если вы на «ты» с байесовской статистикой, читали вот эту и вот эту статьи из Deepmind — не обращайте внимания на предыдущие две строчки и разрешите потом записаться к вам на консультацию по одному богословскому вопросу.

Итак, магия:


Слева — обычная и всем знакомая нейронная сеть, у которой каждая связь между парой нейронов задана каким-то числом (весом). Справа — нейронная сеть, веса которой представлены не числами, а демоническими облаками вероятности, колеблющимися всякий раз, когда дьявол играет в кости со вселенной. Именно ее мы в итоге и хотим получить. И если вы, как и я, озадаченно трясете головой и спрашиваете «а нафига все это нужно» — добро пожаловать под кат.

Читать дальше →

Сколько котов на хабре?

Время на прочтение6 мин
Количество просмотров40K
Недавно я ехал на автобусе из Торонто в Нью-Йорк, снаружи автобуса было темно, внутри меня было немного портвейна, спать совершенно не хотелось, и я решил поразбираться с Deep Learning. Скачал Caffe, скормил ему пару картинкок, на которых правильно распознались мяч и банан. Захотелось распознать что-то более интересное, и я вспомнил, что где-то на жёстком диске у меня есть дамп хабрахабра, который я делал, когда проходил курс информационного поиска в ШАДе Яндекса.

На написание скрипта, который распознаёт, что изображено на аватарке хабропользователя и грепает всех кошачьих, ушло несколько минут, на обновление дампа до актуального и распознавание картинок ушло несколько дней, и теперь я могу утверждать, что на хабрахабре по меньшей мере 748 котов.

Под хаброкатом можно прочитать чуть больше подробностей и посмотреть на всех котов.



Читать дальше →

Нейрореволюция в головах и сёлах

Время на прочтение8 мин
Количество просмотров94K
В последнее время всё чаще и чаще слышишь мнение, что сейчас происходит технологическая революция. Бытует мнение, что мир стремительно меняется.



На мой взгляд такое и правда происходит. И одна из главных движущих сил — новые алгоритмы обучения, позволяющие обрабатывать большие объёмы информации. Современные разработки в области компьютерного зрения и алгоритмов машинного обучения могут быстро принимать решения с точностью не хуже профессионалов.

Я работаю в области связанной с анализом изображений. Это одна из областей которую новые идеи затронули сильнее всего. Одна из таких идей — свёрточные нейронные сети. Четыре года назад с их помощью впервые начали выигрывать конкурсы по обработке изображений. Победы не остались незамеченными. Нейронными сетями, до тех пор стоящими на вторых ролях, стали заниматься и пользоваться десятки тысяч последователей. В результате, полтора-два года назад начался бум, породивший множество идей, алгоритмов, статей.

В своём рассказе я сделаю обзор тех идей, которые появились за последние пару лет и зацепили мою тематику. Почему происходящее — революция и чего от неё ждать.

Кто лишится в ближайшие лет десять работы, а у кого будут новые перспективные вакансии.
Читать дальше →

Постановка задачи компьютерного зрения

Время на прочтение13 мин
Количество просмотров72K

Последние лет восемь я активно занимаюсь задачами, связанными с распознаванием образов, компьютерным зрением, машинным обучением. Получилось накопить достаточно большой багаж опыта и проектов (что-то своё, что-то в ранге штатного программиста, что-то под заказ). К тому же, с тех пор, как я написал пару статей на Хабре, со мной часто связываются читатели, просят помочь с их задачей, посоветовать что-то. Так что достаточно часто натыкаюсь на совершенно непредсказуемые применения CV алгоритмов.
Но, чёрт подери, в 90% случаев я вижу одну и ту же системную ошибку. Раз за разом. За последние лет 5 я её объяснял уже десяткам людей. Да что там, периодически и сам её совершаю…

В 99% задач компьютерного зрения то представление о задаче, которое вы сформулировали у себя в голове, а тем более тот путь решения, который вы наметили, не имеет с реальностью ничего общего. Всегда будут возникать ситуации, про которые вы даже не могли подумать. Единственный способ сформулировать задачу — набрать базу примеров и работать с ней, учитывая как идеальные, так и самые плохие ситуации. Чем шире база-тем точнее поставлена задача. Без базы говорить о задаче нельзя.

Тривиальная мысль. Но все ошибаются. Абсолютно все. В статье я приведу несколько примеров таких ситуаций. Когда задача поставлена плохо, когда хорошо. И какие подводные камни вас ждут в формировании ТЗ для систем компьютерного зрения.
Читать дальше →

Рекурентная нейронная сеть в 10 строчек кода оценила отзывы зрителей нового эпизода “Звездных войн”

Время на прочтение11 мин
Количество просмотров160K
Hello, Habr! Недавно мы получили от “Известий” заказ на проведение исследования общественного мнения по поводу фильма «Звёздные войны: Пробуждение Силы», премьера которого состоялась 17 декабря. Для этого мы решили провести анализ тональности российского сегмента Twitter по нескольким релевантным хэштегам. Результата от нас ждали всего через 3 дня (и это в самом конце года!), поэтому нам нужен был очень быстрый способ. В интернете мы нашли несколько подобных онлайн-сервисов (среди которых sentiment140 и tweet_viz), но оказалось, что они не работают с русским языком и по каким-то причинам анализируют только маленький процент твитов. Нам помог бы сервис AlchemyAPI, но ограничение в 1000 запросов в сутки нас также не устраивало. Тогда мы решили сделать свой анализатор тональности с блэк-джеком и всем остальным, создав простенькую рекурентную нейронную сеть с памятью. Результаты нашего исследования были использованы в статье “Известий”, опубликованной 3 января.



В этой статье я немного расскажу о такого рода сетях и познакомлю с парой классных инструментов для домашних экспериментов, которые позволят строить нейронные сети любой сложности в несколько строк кода даже школьникам. Добро пожаловать под кат.
Читать дальше →

Яндекс.Метеум – новая разработка или маркетинговый ход?

Время на прочтение4 мин
Количество просмотров39K
В конце ноября компания «Яндекс» анонсировала свой обновленный погодный сервис под названием «Яндекс.Метеум». Якобы новая программная разработка по своим алгоритмам способна рассчитывать прогноз с точностью до дома. Меня как метеоролога-любителя не мог не заинтересовать новый продукт. Я всегда с уважением относился к Яндексу, даже несмотря на неудачный перезапуск Кинопоиска, но детально изучив анонс, опубликованный на сайте «Хабрахабр», я нашёл в нём ряд несостыковок и логических ошибок. Тогда я решил провести своё исследование точности нового сервиса, относительно других погодных ресурсов, а именно моего сайта «Погода 45» (Прогноз погоды для Кургана) и Foreca (базовый ресурс с которого Яндекс берёт данные).

image


В дальнейшем я буду опираться на расширенный анонс, опубликованный на Хабрахабре. Разберём эти несостыковки и логические неточности, которые мной были найдены в этом анонсе.
Читать дальше →

Яндекс анонсирует собственную технологию прогнозирования погоды Метеум. С точностью до дома

Время на прочтение8 мин
Количество просмотров60K
Сегодня мы анонсируем новую технологию Метеум — теперь с её помощью Яндекс.Погода будет строить собственный прогноз погоды, а не полагаться только на данные партнёров, как это было раньше.

Причём прогноз будет рассчитываться отдельно для каждой точки, из которой вы его запрашиваете, и пересчитываться каждый раз, когда вы на него смотрите, чтобы быть максимально актуальным.



В этом посте я хочу рассказать немного о том, как в наше время устроен мир погодных моделей, чем наш подход отличается от обычных, почему мы решились строить собственный прогноз и почему верим, что у нас получится лучше, чем у всех остальных.

Мы построили собственный прогноз с использованием традиционной модели атмосферы и максимально подробной сеткой, но и постарались собрать все возможные источники данных об атмосферных условиях, статистику о том, как ведёт себя погода на деле, и применили к этим данным машинное обучение, чтобы уменьшить вероятность ошибок.

Сейчас в мире есть несколько основных моделей, по которым предсказывают погоду. Например, модель с открытым исходным кодом WRF, модель GFS, которые изначально являлись американской разработкой. Сейчас ее развитием занимается агентство NOAA.
Читать дальше →

Как я победил в конкурсе BigData от Beeline

Время на прочтение7 мин
Количество просмотров88K
image

Все уже много раз слышали про конкурс по машинному обучению от Билайн и даже читали статьи (раз, два). Теперь конкурс закончился, и так вышло, что первое место досталось мне. И хотя от предыдущих участников меня и отделяли всего сотые доли процента, я все же хотел бы рассказать, что же такого особенного сделал. На самом деле — ничего невероятного.
Читать дальше →

Ближайшие события

Курс по машинному обучению на Coursera от Яндекса и ВШЭ

Время на прочтение4 мин
Количество просмотров118K
Когда-то мы публиковали на Хабре курс по машинному обучению от Константина Воронцова из Школы анализа данных. Нам тогда предлагали сделать из этого полноценный курс с домашними заданиями и разместить его на Курсере.

И сегодня мы хотим сказать, что наконец можем выполнить все эти пожелания. В январе на Курсере пройдёт курс, организованный совместно Яндексом (Школой анализа данных) и ВШЭ. Записаться на него можно уже сейчас: www.coursera.org/learn/introduction-machine-learning.


Сооснователь Coursera Дафна Коллер в офисе Яндекса

Курс продлится семь недель. Это означает, что по сравнению с ШАДовским двухсеместровым курсом он будет заметно упрощен. Однако в эти семь недель мы попытались вместить только то, что точно пригодится на практике, и какие-то базовые вещи, которые нельзя не знать. В итоге получился идеальный русскоязычный курс для первого знакомства с машинным обучением.

Кроме того, мы верим, что после прохождения курса у человека должна остаться не только теория в голове, но и скилл «в пальцах». Поэтому все практические задания построены вокруг использования библиотеки scikit-learn (Python). Получается, что после прохождения нашего курса человек сможет сам решать задачи анализа данных, и ему будет проще развиваться дальше.

Под катом можно прочитать подробнее обо всех авторах курса и узнать его примерное содержание.
Читать дальше →

Как подобрать платье с помощью метода главных компонент

Время на прочтение3 мин
Количество просмотров31K
Итак, кто не против, чтобы одежду ему подбирала программа, машина, нейросеть?

Любой набор изображений возможно проанализировать с помощью метода главных компонент. Этот метод уже довольно успешно применяется при распознавании лиц. Мы же попробуем использовать его на примере женских платьев.

image
Читать дальше →

Покупка оптимальной квартиры с R

Время на прочтение12 мин
Количество просмотров62K
Многие люди сталкиваются с вопросом покупки или продажи недвижимости, и важный критерий здесь, как бы не купить дороже или не продать дешевле относительно других, сопоставимых вариантов. Простейший способ — сравнительный, ориентироваться на среднюю цену метра в конкретном месте и экспертно добавляя или снижая проценты от стоимости за достоинства и недостатки конкретной квартиры. image Но данный подход трудоемок, неточен и не позволит учесть все многообразие отличий квартир друг от друга. Поэтому я решил автоматизировать процесс выбора недвижимости, используя анализ данных путем предсказания «справедливой» цены. В данной публикации описаны основные этапы такого анализа, выбрана лучшая предиктивная модель из восемнадцати протестированных моделей на основании трех критериев качества, в итоге лучшие (недооцененные) квартиры сразу помечаются на карте, и все это используя одно web-приложение, созданное с помощью R.

Читать дальше →

Лекция Дмитрия Ветрова о математике больших данных: тензоры, нейросети, байесовский вывод 

Время на прочтение2 мин
Количество просмотров49K
Сегодня лекция одного из самых известных в России специалистов по машинному обучению Дмитрия Ветрова, который руководит департаментом больших данных и информационного поиска на факультете компьютерных наук, работающим во ВШЭ при поддержке Яндекса.

Как можно хранить и обрабатывать многомерные массивы в линейных по памяти структурах? Что дает обучение нейронных сетей из триллионов триллионов нейронов и как можно осуществить его без переобучения? Можно ли обрабатывать информацию «на лету», не сохраняя поступающие последовательно данные? Как оптимизировать функцию за время меньшее чем уходит на ее вычисление в одной точке? Что дает обучение по слаборазмеченным данным? И почему для решения всех перечисленных выше задач надо хорошо знать математику? И другое дальше.



Люди и их устройства стали генерировать такое количество данных, что за их ростом не успевают даже вычислительные мощности крупных компаний. И хотя без таких ресурсов работа с данными невозможна, полезными их делают люди. Сейчас мы находимся на этапе, когда информации так много, что традиционные математические методы и модели становятся неприменимы. Из лекции Дмитрия Петровича вы узнаете, почему вам надо хорошо знать математику для работы с машинным обучением и обработкой данных. И какая «новая математика» понадобится вам для этого. Слайды презентации — под катом.
Читать дальше →

Внезапный диван леопардовой расцветки

Время на прочтение8 мин
Количество просмотров83K
Если вы интересуетесь искусственным интеллектом и прочим распознаванием, то наверняка уже видели эту картинку:


А если не видели, то это результаты Хинтона и Крижевского по классификации ImageNet-2010 глубокой сверточной сетью

Давайте взглянем на ее правый угол, где алгоритм опознал леопарда с достаточной уверенностью, разместив с большим отрывом на втором и третьем месте ягуара и гепарда.

Это вообще довольно любопытный результат, если задуматься. Потому что… скажем, вы знаете, как отличить одного большого пятнистого котика от другого большого пятнистого котика? Я, например, нет. Наверняка есть какие-то зоологические, достаточно тонкие различия, типа общей стройности/массивности и пропорций тела, но мы же все-таки говорим о компьютерном алгоритме, которые до сих пор допускают какие-то вот такие достаточно глупые с человеческой точки зрения ошибки. Как он это делает, черт возьми? Может, тут что-то связанное с контекстом и фоном (леопарда вероятнее обнаружить на дереве или в кустах, а гепарда в саванне)? В общем, когда я впервые задумался над конкретно этим результатом, мне показалось, что это очень круто и мощно, разумные машины где-то за углом и поджидают нас, да здравствует deep learning и все такое.

Так вот, на самом деле все совершенно не так.
под катом пятна

Определяем веса шахматных фигур регрессионным анализом

Время на прочтение15 мин
Количество просмотров86K
Здравствуй, Хабр!

В этой статье речь пойдёт о небольшом программистском этюде на тему машинного обучения. Замысел его возник у меня при прохождении известного здесь многим курса «Machine Learning», читаемого Andrew Ng на Курсере. После знакомства с методами, о которых рассказывалось на лекциях, захотелось применить их к какой-нибудь реальной задаче. Долго искать тему не пришлось — в качестве предметной области просто напрашивалась оптимизация собственного шахматного движка.

Вступление: о шахматных программах



Не будем детально углубляться в архитектуру шахматных программ — это могло бы стать темой отдельной публикации или даже их серии. Рассмотрим только самые базовые принципы. Основными компонентами практически любого небелкового шахматиста являются поиск и оценка позиции.

Поиск представляет собой перебор вариантов, то есть итеративное углубление по дереву игры. Оценочная функция отображает набор позиционных признаков на числовую шкалу и служит целевой функцией для поиска наилучшего хода. Она применяется к листьям дерева, и постепенно «возвращается» к исходной позиции (корню) с помощью альфа-бета процедуры или её вариаций.

Строго говоря, настоящая оценка может принимать только три значения: выигрыш, проигрыш или ничья — 1, 0 или ½. По теореме Цермело для любой заданной позиции она определяется однозначно. На практике же из-за комбинаторного взрыва ни один компьютер не в состоянии просчитать варианты до листьев полного дерева игры (исчерпывающий анализ в эндшпильных базах данных — это отдельный случай; 32-фигурных таблиц в обозримом будущем не появится… и в необозримом, скорее всего, тоже). Поэтому программы работают в так называемой модели Шеннона — пользуются усечённым деревом игры и приближённой оценкой, основанной на различных эвристиках.
Читать дальше →

Машинное обучение в навигационных устройствах: определяем маневры машины по акселерометру и гироскопу

Время на прочтение10 мин
Количество просмотров27K
Программы, которые доступны нам сегодня для автомобильной навигации оказывают большую помощь водителям. Они помогают нам ориентироваться в незнакомой местности и объезжать пробки. Это большой труд людей со всего мира, который сделал нашу жизнь проще. Но нельзя останавливаться на достигнутом, технологии идут вперед и качество программ также должно расти.

image

Сегодня, на мой взгляд, одна из проблем навигационных устройств – это то, что они не ведут пользователя по полосам. Эта проблема увеличивает время в пути, пробки и аварийность. Недавно google maps начали отображать разметку дороги перед поворотом, что уже хороший результат, но и тут можно многое улучшить. Карты не знают на какой полосе сейчас находится машина, средствами gps узнать это проблематично, у gps слишком большая погрешность для этого. Если бы мы знали текущую полосу, то знали бы скорость движения по полосами и могли бы задолго подсказывать пользователю в явном виде, на какую полосу и когда ему лучше перестроиться. Например, навигатор говорил бы “Продолжайте держаться этой полосы до перекрестка” или “Перестройтесь на крайнюю левую полосу”.

В этой статье мы попробуем рассказать, как мы пытаемся определять перестроения, текущую полосу движения автомобиля, повороты, обгоны, а также другие маневры с помощью машинного обучения по данным акселерометра и гироскопа.
Читать далее

Вклад авторов