Как стать автором
Поиск
Написать публикацию
Обновить
792.96

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Компании, заменившие людей на ИИ, стали осознавать свою ошибку

Время на прочтение8 мин
Количество просмотров19K

По словам миллиардера и гендиректора OpenAI Сэма Альтмана, 2025 год должен был стать годом, «когда ИИ-агенты заработают в полную силу».

На эту же идею купились многие компании. ИИ-инструменты появились в поиске Google, в офисных программах Microsoft, в лайв-чатах большинства сервисов. Фирмы начали увольнять программистов, готовясь заменить их несколькими ИИ-кодерами. Людей сокращали целыми отделами — и в Европе, и в США, и в России. В основном это пришлось на конец прошлого года и начало текущего.

Но несмотря на всеобщую шумиху, сейчас видно, что прогноз Сэма Альтмана не оправдался. По исследованиям, даже лучший ИИ-агент (от Anthropic) мог выполнить только 24% от порученных ему типичных задач. А стоимость поддержки и оплата за серверы оказалась выше, чем большинство ожидали.

Недавний опрос, проведённый аналитической компанией Gartner, показал: больше половины руководителей теперь говорят, что откажутся от планов «значительного сокращения персонала службы поддержки клиентов» к 2027 году. И это речь идёт о поддержке клиентов, где задачи, казалось бы, обычно решаются вполне типичные!

В общем, хайп слегка пробуксовывает. Пиарщикам приходится на ходу переписывать речи о том, что ИИ «превзошёл автоматизацию». Вместо этого начинают использовать такие фразы, как «гибридный подход» и «трудности перехода» — чтобы как-то объяснить тот факт, что даже с ИИ компаниям по-прежнему нужны люди, управляющие рабочими процессами. Много людей.

Читать далее

Новости

Как приручить AI-пиксель-арт

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров9.5K

За последние пару лет генеративные нейросети стали волшебной кисточкой для всего: концепт‑артов, иконок, иллюстраций, обложек, аватаров, спрайтов… Особенно — пиксель‑арта. В Midjourney, Stable Diffusion, Dall‑E, Image-1 и в других моделях можно просто вбить: «Pixel art goose with goggles in the style of SNES» — и получить шикарного пиксельного гуся за 10 секунд.

Но если ты пробовал вставить такого гуся в игру — ты уже знаешь боль.

Я решил вкопаться в эту тему поглубже и сделать open‑source‑инструмент, который автоматизирует превращение AI‑generated pixel art в pixel‑perfect pixel art.

Читать далее

Топ-24 бесплатных нейросетей и AI-сервисов на все случаи жизни

Уровень сложностиПростой
Время на прочтение11 мин
Количество просмотров49K

2025 год. Как же легко алгоритмы вошли и закрепились в нашей жизни. Они на работе, в учёбе, в творчестве, в быту. Нейросети редактируют тексты, выбирают шрифт, накидывают идеи, помогают с кодом, сочиняют музыку. Честно говоря, единственное, что они пока не умеют — это сварить вам кофе. Хотя… и это, кажется, вопрос времени.

А ведь пару лет назад мы с удивлением наблюдали, как нейросети неуверенно двигают объекты на фото. Кто же тогда мог предсказать, что эпоха Уилла Смита, поедающего спагетти, окажется прологом к такой революции?

Вместе с возможностями пришёл и новый вызов. Как разобраться во всём этом многообразии. Что работает действительно хорошо? Что подойдёт под ваши задачи? Где не нужно платить, регистрироваться и разбираться в интерфейсах?

Мы собрали подборку надёжных и удобных нейросетей, которые уже сейчас можно использовать без лишних заморочек. Всё разложено по категориям: генерация текста, создание изображений, видео, музыка, презентации и многое другое. В каждой расположились три сервиса!

Приятного чтения!

Читать далее

T-one — открытая русскоязычная потоковая модель для телефонии

Уровень сложностиСложный
Время на прочтение14 мин
Количество просмотров11K

Всем привет! Я Андрей, ML-разработчик из команды распознавания речи в Т-Банке. Мы занимаемся полным циклом разработки: сбором и разметкой данных, проведением экспериментов по обучению моделей, интеграцией в продакшен.

В русскоязычном сегменте давно не хватает открытых моделей распознавания речи, которые можно было бы быстро кастомизировать под реальные задачи. Более того, почти все доступные модели работают офлайн и не адаптированы под специфику телефонии. Поэтому мы решили опубликовать собственную потоковую акустическую модель с кодом для ее инференса и дообучения, а еще выложить 5-граммную языковую модель.

Акустическая модель является по-настоящему потоковой, легковесной, производительной и обгоняет по качеству более крупные открытые офлайн-модели в телефонии.

В статье расскажу, как устроена потоковая модель распознавания, как и на чем ее обучали и как ее можно использовать.

Читать далее

Исследование METR: использование Cursor замедляет опытных разработчиков на 19 %

Уровень сложностиПростой
Время на прочтение20 мин
Количество просмотров21K

Считается устоявшейся истиной, что инструменты автодополнения кода и прочая помощь от больших языковых моделей помогают программировать быстрее. Исследование организации METR ставит это фактоид под сомнение и даже демонстрирует обратный эффект.

В рамках анализа труда 16 программистов обнаружилось, что ИИ замедляет человека на 19 %. Это противоречит мнению экспертов индустрии машинного обучения, экономистов и самих участников эксперимента. Важно, что проверка шла не на очередных бенчмарках или предложениях решать алгоритмические задачи на скорость, а в обычной работе людей.

Читать далее

Георгий Герганов, автор llama.cpp и звукового кейлогера

Время на прочтение6 мин
Количество просмотров15K

Многие пользуются YouTube, Netflix, но не подозревают о ключевых опенсорсных программах типа ffmpeg, которые работают на бэкенде этих сервисов. Похожая ситуация с нейронками, где многие знают программу Ollama для локального запуска моделей на CPU. Но мало кто понимает, что это всего лишь простенькая оболочка вокруг опенсорсной библиотеки llama.cpp на С, которая и делает инференс. Автор этой библиотеки, талантливый разработчик Георгий Герганов, мало известен широкой публике.

Читать далее

Карты Tenstorrent для DIY-сервера с локальной LLM

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров8.7K

В апреле 2025 года компания Tenstorrent начала принимать заказы на PCIe-карты Blackhole и Wormhole (на фото). Ускорители TPU на открытой архитектуре RISC-V с 28−32 ГБ видеопамяти предназначены непосредственно для разработчиков, которые желают запускать LLM на домашнем ПК или небольшом DIY-сервере. Это реальная альтернатива в сегменте, где пока доминирует Nvidia.

Во главе Tenstorrent стоит легендарный инженер Джим Келлер, ветеран Intel и AMD, создатель микроархитектуры AMD Zen и соавтор x86-64.

Благодаря радикальной открытости своих решений Tenstorrent уже привлекла небольшую армию фанатов среди LLM-энтузиастов.

Читать далее

«Тупой ИИ» с нами надолго. Почему в новых моделях больше галлюцинаций

Время на прочтение6 мин
Количество просмотров42K

В последние несколько месяцев ведущие модели обновились с функцией «рассуждений» (reasoning). Предполагалось, что качество ответов улучшится. Но последующие тесты показали, что уровень галлюцинаций сильно вырос. И это не какая-то случайная недоработка разработчиков, а фундаментальное свойство. Сейчас становится очевидным, что от галлюцинаций мы не избавимся никогда.
Читать дальше →

Локальный чатбот без ограничений: гайд по LM Studio и открытым LLM

Уровень сложностиПростой
Время на прочтение12 мин
Количество просмотров31K

В этой статье мы не только установим локальный (и бесплатный) аналог ChatGPT, но и сделаем обзор нескольких открытых LLM, разберёмся в продвинутых настройках LM Studio, подключим чатбота к Visual Studio Code и научим его помогать нам в программировании. А ещё мы посмотрим, как можно тонко настраивать поведение модели с помощью системных промптов.

Читать далее

Что же такое TPU

Уровень сложностиПростой
Время на прочтение14 мин
Количество просмотров15K

В последнее время я много работал с TPU и мне было интересно наблюдать такие сильные различия в их философии дизайна по сравнению с GPU.

Главная сильная сторона TPU — это их масштабируемость. Она достигается благодаря и аппаратной (энергоэффективности и модульности), и программной стороне (компилятору XLA).

Общая информация

Если вкратце, то TPU — это ASIC компании Google, делающий упор на два фактора: огромную производительность перемножения матриц + энергоэффективность.

Их история началась в Google в 2006 году, когда компания впервые начала размышлять о том, что же ей стоит реализовывать: GPU, FPGA или специализированные ASIC. В те времена было лишь несколько областей применения, в которых требовалось специализированное оборудование, поэтому было решено, что потребности компании можно удовлетворить при помощи незадействованных вычислительных ресурсов (compute) CPU её крупных датацентров. Но в 2013 году ситуация изменилась: функция голосового поиска Google начала использовать нейросети, и по расчётам для её реализации потребовалось бы гораздо больше compute.

Перенесёмся в настоящее: сегодня TPU лежат в основе большинства ИИ-сервисов Google. Разумеется, сюда включены обучение и инференс Gemini и Veo, а также развёртывание моделей рекомендаций (DLRM).

Давайте начнём разбирать внутренности TPU с самого нижнего уровня.

Читать далее

Как мы учим роботов ходить плавно, или Почему градиент градиента — это не опечатка, а ключ к безопасной робототехнике

Время на прочтение8 мин
Количество просмотров7.2K

Привет, Хабр! Меня зовут Лёша Лещанкин, я руковожу проектом Humanoids в Яндексе. В начале 2025 года мы запустили это направление при поддержке фонда технологических инициатив компании — Yet Another Tech Fund, созданного специально для реализации новаторских идей сотрудников. Наша цель — создать гуманоидных роботов, которые смогут уверенно и безопасно работать рядом с людьми в самых разных условиях: от логистики и промышленности до сферы обслуживания.

В рамках нашего проекта мы тестируем разные RL‑модели. И сегодня расскажу об одном из методов, который позволил нам перейти от «робот дёргается и падает» к «робот ходит плавно 500 шагов подряд» — Lipschitz‑Constrained reinforcement learning.

Читать далее

Интерфейсы без экрана: как разговаривают голосовые ассистенты, когда никто не слышит

Время на прочтение8 мин
Количество просмотров3K

А что если ваш голосовой ассистент никогда не замолкает? Даже когда экран темный, а в комнате мертвая тишина, он ведет свою тайную беседу. Не с вами, а с тысячами серверов. О чем? О вас. В этой статье я предлагаю разобрать механизмы этого фонового «общения»: что именно передается в тишине и как это работает. Детали, как всегда, под катом.
Читать дальше →

Векторный поиск внутри PostgreSQL: что умеет и где может пригодиться pgvector

Уровень сложностиПростой
Время на прочтение9 мин
Количество просмотров7.7K

Итак, ваш проект вырос и вам потребовалась новая функциональность, будь то рекомендательный движок, база знаний или автоматизированная первая линия техподдержки. Для всего этого можно использовать векторный и/или семантический поиск, а также интегрировать в проект LLM. Поздравляю — теперь вам нужно еще и хранить embedding-векторы, а также искать по ним ближайшие объекты. Решений два: внешняя векторная БД или интеграция всего этого богатства в существующий стек. Второй путь проще на старте, немного быстрее и обычно дешевле — разумеется, если вы уже используете PostgreSQL.

Привет, Хабр! Меня зовут Александр Гришин, я руководитель по развитию продуктов хранения данных в Selectel и отвечаю за развитие: облачных баз данных и S3-хранилища. В этой статье я расскажу о pgvector — расширении для PostgreSQL, которое позволяет добавить векторный поиск без внешних сервисов, пересборки архитектуры и большого количества работы. Материал пригодится продуктовым командам, архитекторам, бэкенд-разработчикам и инженерам данных.
Читать дальше →

Ближайшие события

9 коротких промптов, которые делают работу с ChatGPT (и любым другим ИИ) проще и веселее

Уровень сложностиПростой
Время на прочтение3 мин
Количество просмотров92K

Привет! Как и многие в 2025 году, я постоянно работаю с ChatGPT и Gemini: они помогают мне в работе, отвечают на сотни вопросов и просто развлекают. За время работы с ИИ у меня накопилась целая коллекция мини-промптов, которые делают процесс проще, результативнее и даже веселее. Сегодня делюсь с вами.

Читать далее

Простой механизм поиска с нуля

Время на прочтение14 мин
Количество просмотров5.3K

Мы с Крисом недавно «с нуля» буквально за пару часов создали механизм поиска для моего блога. Основную часть проделал именно Крис, так как до этого с word2vec я был знаком лишь отдалённо.

Разработанный нами поисковик основывается на векторных представлениях (эмбеддингах) слов. Принцип здесь следующий. Функция получает слово и отображает его в N-мерное пространство (в данном случае N=300), где каждое измерение отражает определённый оттенок смысла. Вот хорошая статья (англ.) о том, как обучить собственную модель word2vec, и её внутреннем устройстве.

Суть работы созданного нами поиска заключается в преобразовании моих статей, а точнее составляющих их слов, в эмбеддинги, сохраняемые в общем пространстве. Затем при выполнении конкретного поиска текст его запроса преобразуется аналогичным образом и сопоставляется с векторами статей. В результате этого сопоставления, используя метрику косинусного сходства, мы ранжируем статьи по их релевантности запросу.

Уравнение ниже может показаться пугающим, но в нём говорится, что косинусное сходство, представляющее косинус угла между двух векторов cos(theta), определяется в виде скалярного произведения, поделённого на произведение величин каждого вектора. Разберём всё это подробнее.

Читать далее

Как Cursor устроен изнутри. Часть 1

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров31K

Вторая часть статьи здесь

Всего за год нагрузка на Cursor выросла в 100 раз: более 1 млн запросов в секунду и миллиарды автодополнений кода каждый день. Подробный разбор архитектуры — вместе с сооснователем Суалехом Асифом.

Cursor — это IDE с кодогенерацией на AI-агентах, которая сейчас пользуется наибольшей популярностью среди разработчиков. В прошлогоднем опросе, Cursor был самым частым ответом на вопрос «Назовите вашу любимую IDE с генеративными функциями, помогающими в работе».

Стартап, стоящий за Cursor — Anysphere, был основан в 2022 году, а в марте 2023 года запустил Cursor. Недавно Anysphere сообщила, что привлекла $900 млн, при оценке компании в $9.9B. Годовой доход (автор имеет в виду годовой повторяющийся доход, Annual Recurring Revenue, ARR. Прим. пер.) уже превысил $500M. Ни одна другая компания в сфере инструментов для разработчиков, которую я знаю, не достигала этого рубежа в течение первых 2 лет после запуска первого продукта. Поспособствовало этому и то, что Cursor используется более чем половиной из 500 крупнейших технологических компаний из списка Fortune 500.

Я встретился с сооснователем Cursor, Суалехом Асифом, чтобы узнать, как работает Cursor и как команда этот инструмент создает. Обсудили следующие темы:

Технологический стек. TypeScript, Rust и куча облачных провайдеров — Turbopuffer, Datadog, PagerDuty и другие.

Как работает автодополнение. Устройство low-latency движка для передачи зашифрованного контекста на сервер для инференса.

Читать далее

Цифровой абьюз. Обзор практик от энтузиастов по поиску моральных пределов чат-ботов

Время на прочтение10 мин
Количество просмотров9.2K

Человек любознателен. Многие из нас с раннего возраста испытывали непреодолимое стремление разобрать на части или хотя бы применить не по назначению какое-нибудь устройство. Жертвами этой любознательности обычно становились бесчисленные механические игрушки, бытовая техника или какие-нибудь механизмы. Ну а сейчас, в эпоху технологий, у нас есть чат-боты на основе ИИ, и они не стали исключением.

Забавно задавать им вопросы с подвохом, использовать противоречивые сценарии, пробовать ввести в логическую ловушку. Пользователи начали сознательно провоцировать или «сводить с ума» своих виртуальных собеседников. В этой статье посмотрим, как именно это происходит, разберем реальные случаи и обсудим, к каким последствиям может привести.
Читать дальше →

Разбираемся с суффиксами квантования LLM: что на самом деле значат Q4_K_M, Q6_K и Q8_0

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров12K

Привет!
Задумывались, какую версию квантованной LLM выбрать: Q4_K_M, Q6_K или Q8_0? Насколько Q6_K хуже справляется с задачами по сравнению с Q8_0? И что вообще означают все эти буквы в суффиксах?

Примечание: это адаптированный перевод моей статьи на Medium. Перевод был сделан при помощи мозга, а не нейросетей или Google Translate.

Узнать чуть больше про квантование LLM

Ищем игры для Atari в случайных данных

Уровень сложностиПростой
Время на прочтение24 мин
Количество просмотров12K

В рамках этого проекта я сгенерировал около 30 миллиардов файлов случайных данных по 4 КБ. Из этих файлов на основании эвристик из полной коллекции файлов ROM Atari было выбрано примерно 10 тысяч. Затем система классификатора просканировала их при помощи эмулятора Atari 2600, чтобы проверить, окажется ли какой-то из этих случайных файлов игрой для Atari. Этот проект отвечает на вопросы, которые никто не задавал, он никому не нужен и представляет собой огромную пустую трату ресурсов. Что, если засунуть в GPU миллиард обезьян и заставить их написать игру для Atari 2600?

Благодаря прогрессу GPU, ИИ и машинного обучения сегодня мы можем (очень быстро) написать на Python скрипт, который дампит мусор в ROM по 4 КБ и спрашивает: «похоже ли это на игру?». Проект был создан не из ностальгии, моей первой консолью была NES. Я вознамерился исследовать нечто невообразимо обширное и посмотреть, найдётся ли там что-нибудь странное.

Читать далее

Глубокое обучение в науке вредно без глубокой проверки фактов

Уровень сложностиПростой
Время на прочтение7 мин
Количество просмотров4.4K

Глубокое обучение гламурно и ажиотажно. Если обучить трансформер (современную языковую модель) на датасете из 22 миллионов ферментов, а затем использовать его для прогнозирования функции 450 неизвестных ферментов, то можно опубликовать свои результаты Nature Communications (уважаемом научном издании). Вашу статью прочитают 22 тысяч раз и она будет в верхних 5% из всех результатов исследований по оценке Altmetric (рейтингу внимания к онлайн-статьям).

Однако если вы проделаете кропотливую работу по анализу чужой опубликованной работы и обнаружите, что она полна серьёзных ошибок, в том числе сотнями некорректных прогнозов, то можете опубликовать на bioRxiv препринт, который не получит и доли цитат и просмотров исходного исследования. На самом деле, именно это и произошло в случае двух статей:

Functional annotation of enzyme-encoding genes using deep learning with transformer layers | Nature Communications

Limitations of Current Machine-Learning Models in Predicting Enzymatic Functions for Uncharacterized Proteins | bioRxiv

Эта пара статей о функциях ферментов стала прекрасным примером для изучения границ применения ИИ в биологии и неправильно расставленных акцентов в современной публикации результатов. В этом посте я расскажу о некоторых подробностях, однако призываю вас изучить статьи самостоятельно. Этот контраст станет ярким напоминанием о том, как сложно бывает оценить правдивость результатов ИИ без глубокого знания предметной области.

Читать далее
1
23 ...

Вклад авторов