Как стать автором
Обновить

О метриках тестирования: code coverage для тестировщиков

Тестирование IT-систем *
Из песочницы
image Как известно из книги «Путеводитель для путешествующих автостопом по галактике», ответ на главный вопрос жизни, вселенной и всего такого — 42. Процент покрытия кода по линиям на одном из моих проектов — 81, дает ли эта цифра ответ на главный вопрос тестирования «cколько тестов достаточно для определения качества продукта»?

В течении своей работы в айти-сфере и тестировании я видела мало команд и проектов, где тестировщики реально используют code coverage в своей работе. Связано это на мой взгляд с двумя вещами:

1. Тем, что тестируем мы прежде всего требования;
2. Далеко не все понимают, как считать и использовать покрытие.

Интересующимся предлагаю свой взгляд на эти 2 пункта.

Требования vs код


Тестировщик тестирует требования. Даже если их формально нет, есть представление о том, как должна вести себя система. Это и только это важно в конечном итоге.
Но.
Не бывает четких исчерпывающих полных требований, проверив каждое из которых, смело можно сказать, что система будет работать как надо и багов нет.

Пример 1

Приложение пытается сохранить данные в БД (располагается на другом сервере). Есть описание того, как оно должно это делать, в том числе звучит требование, что в случае невозможности выполнить операцию (нет доступа к БД, например), мы должы пытаться это сделать до истечения определенного таймаута, потом выдавать клиенту ошибку.

Что значит невозможно выполнить операцию?

Предположим, тестировщик проверяет сценарий с потерей соединения к БД в процессе работы. Все работает хорошо, но значит ли, что багов нет?
В упомянутом приложении мы посмотрели покрытие кода соответствующих классов — оказалось, что разработчик предусмотрел в коде обработку около 5 исключительных ситуаций.

Это значило, как минимум, следующие случаи:
1. Соединение с сервером БД не может быть установлено;
2. Соединение с сервером БД установлено, выполнение запроса вызвало оракловую ошибку;
3. Соединение с сервером БД было установлено, запрос начал выполняться и завис — тут был баг. Приложение ждало ответа примерно минут 5, потом в логи летел эксепшн и больше оно эти данные записать не пыталось.

Пара остальных не стоило внимания по разным причинам.

В примере требования формально проверено было и 1-м кейсом, но баг был найден после анализа покрытия кода. Можно поспорить, что это пример не о пользе code coverage, а о пользе взаимодействия внутри команды (у разработчика детали имплементации можно было бы узнать заранее или дать ему кейсы на ревью), на самом деле я всегда так делаю но не о всем догадаешься спросить, часто внимание к каким-то вещам привлекают непокрытые блоки кода.

Пример 2

В другой системе, которуя я тестировала, при потере консистентности данных приложение должно было выкидывать соответствующий эксепшн, бросать нотификацию мониторингу и ждать, когда придут люди и спасут его. Тесты покрывали разные случаи возникновения таких ситуаций, все обрабатывалось нормально.
Мы посмотрели код, нужный кусок был покрыт хорошо, но я увидела в другом классе непокрытую область кода, в которой бросался тот же самый event о потери консистентности. При каких условиях — неизвестно, т.к. разработчики его быстро выпилили. Оказалось он был скопипасчен из старого проекта, но никто об этом не помнил. Где это могло стрельнуть- неизвестно, но без анализа кода мы бы это не нашли.

Поэтому пусть тестировщик тестирует требования, но если он смотрит еще и код, может поймать то, что в требованиях не описано и хитрые методы тест-дизайна тоже не всегда найдут.

Покрытие = 80. А качество?


Количество не означает качество. Оценка покрытия кода напрямую не связана с качеством продукта, но связана опосредованно.
На одном отчетном совещании я заявила, что покрытие кода у нас увеличилось до 82% по линиям и 51% по условиям, после чего руководством мне был задан вопрос: «А что это значит? Это хорошо или плохо?» Закономерный вопрос, действительно: сколько надо, чтобы было хорошо?

Некоторые разработчики покрывают свой код, добиваясь 100%. Тестировщику 100% добиваться бессмысленно, начиная с какого-то моменты вы столкнетесь с тем, что физически не можете затронуть этот код интеграционными тестами.
Например, разработчики считают хорошим тоном проверять входящие параметры метода на null, хотя в реально работающей системе таких случаев может и не быть (50% по условиям у нас тогда складывалось в том числе из-за этого). Это нормально, передать туда null извне можно было только до первой проверки, которая собственно эту ситуацию и обработает.

К вопросу об «это нормально»: качественная оценка непокрытого кода и ведет в моем понимании к адекватному использованию code coverege. Смотреть важно то, что вы не покрыли, а не сколько. Если это java-код и методы toString(), equals() или ветви с exception, которые сложно воспроизвести интеграционно, ну так и ладно, пусть будет 80% покрытия реальной бизнес-логики. «Лишний» код многие инструменты умеют фильтровать и не считать.
Если сомнения в белых пятнах все-таки остаются, возможно посчитать общее покрытие интеграционными тестами и юнит — разработчики наверняка учли многое что труднодоступно для интеграционных тестов.

Однако есть одно «но». Что, если покрытие кода низкое? 20%, 30%? Где-то я читала забавный факт, что покрытие 50% и меньше (по линиям и условиям, как мне помнится) означает тот уровень тестового покрытия, при котором результат работы приложения будет такой же, как и при отсутствии тестирования вообще. Т.е. там могут быть баги, может не быть багов, с тем же успехом вы могли его и не тестировать. Другое объяснение — много мертвого кода, что маловероятно.

А у нас нет автотестов


А они и не нужны. Даже если вас уверяют в обратном, некоторые разработчики не в курсе, что покрытие можно считать не только для юнит тестов. Есть инструменты, которые пишут покрытие в рантайме, т.е. ставите специально обученный инструментированный билд, проходите на нем тесты, а он пишет покрытие.

А смысл?


Моя знакомая прекрасная тест-лид задала вопрос: «когда тест-кейсы есть не все, и автоматизация в зачаточном состоянии, имеет ли смысл тратить ресурсы на оценку покрытия кода?» Внедрение новых штук в процесс всегда вызывает у менеджмента определенную боль: время, ресурсы и прочие бренности существования, никакого простора для полета тестировщика-мечтателя.

Разберем по порядку, куда конкретно нужно будет потратить ресурсы, если вы решите попробовать считать code coverage:

  1. Выбор тула, подходящего под ваше приложение
  2. Инструментирование билдов (в том числе конфигурация code coverage тула и фильтация «ненужного» для оценки кода)
  3. Построение отчета о покрытии после прогона тестов
  4. Анализ покрытия


Пункты 1 и 2 можно отдать разработчикам, могие из них знакомы-слышали-встречались с общеизвестными тулами и тем более смогут построить собственный билд. Построение отчетов, как правило, делается одной командой в командной строке или автоматически, если вы используете CI (у меня это делал jenkins, он же публиковал отчет).
Самое затратное — это четвертый пункт. Основная трудность тут в том, что для адекватной оценки надо уметь читать код, либо садиться рядом с разработчиком, чтобы он объяснял, что значит этот кусок, и как это воспроизвести. Это требует определенной квалификации от тест-инженера и рабочего времени 1 или 2 человек.

Стоит ли оно того — решать команде и ее руководителям. В проектах, где требования слабо формализованы, либо баги возникают необъяснимым для тестеров образом, возможно это может помочь хотя бы понять направление куда копать.
Еще одна категория — проекты, которые предполагают очень hight-level black box тестирование. Это прежде всего тестирование через UI или внешний API систем, внутри которых содержится куча логики, работающей по своим законам, т.е. извне вы не можете ее затронуть или ей управлять, а значит не можете нормально протестировать. Анализ покрытия в таких проектах создаст аргументированную необходимость переходить к более «низким» уровням тестирования: модульным, покомпонентным, тестированию на заглушках и т.п.
Хорошо работает накопленное покрытие кода в цифрах: на графиках можно увидеть моменты, когда вливается новый код, а тесты еще не подоспели; если уровень покрытия был высоким, потом стал снижаться, но предыдущего уровня так и не достиг — где-то может быть хорошее белое пятно недошедших до тестирования требований, и т.д.

Пожалуй, это все, что я хотела сказать на сегодня.

Напоследок limitations и out of scope


  1. Я постаралась описать в общих словах подход к этом вопросу, не вдаваясь во многие технические подробности. Говоря о «покрытии» 80% я говорю о неком общем или усредненном покрытии, не имея в виду конкретных метрик — покрытия линий, условий и проч. Выбор конкретных метрик — это отдельный интересный вопрос.
  2. Мой опыт в основном связан с java-кодом и инструментами для него, я не работала в этом ключе с другими технологиями, знаю, что есть тулы для C++, но пока попробовать их в деле не удалось.
  3. Серьезный анализ покрытия стоит проводить на стабильных билдах и стабильно работающих тестах, иначе сложно будет сказать что явилось причиной пропусков- упавшие тесты, критичные баги или действительно что-то пропущено
Теги:
Хабы:
Всего голосов 7: ↑6 и ↓1 +5
Просмотры 22K
Комментарии Комментарии 7