Search
Write a publication
Pull to refresh
0
@CheBooRekread⁠-⁠only

User

Send message

Нестандартная кластеризация 5: Growing Neural Gas

Reading time13 min
Views20K
Часть первая — Affinity Propagation
Часть вторая — DBSCAN
Часть третья — кластеризация временных рядов
Часть четвёртая — Self-Organizing Maps (SOM)
Часть пятая — Growing Neural Gas (GNG)

Доброго времени суток, Хабр! Сегодня я бы хотел рассказать об одном интересном, но крайне малоизвестном алгоритме для выделения кластеров нетипичной формы — расширяющемся нейронном газе (Growing Neural Gas, GNG). Особенно мало информации об этом инструменте анализа данных в рунете: статья в википедии, рассказ на Хабре о сильно изменённой версии GNG и пара статей с одним лишь перечислением шагов алгоритма — вот, пожалуй, и всё. Весьма странно, ведь мало какие анализаторы способны работать с меняющимися во времени распределениями и нормально воспринимают кластеры экзотической формы — а это как раз сильные стороны GNG. Под катом я попробую объяснить этот алгоритм сначала человеческим языком на простом примере, а затем более строго, в подробностях. Прошу под кат, если заинтриговал.

(На картинке: нейронный газ осторожно трогает кактус)
Читать дальше →

Как сделать свой блокчейн. Часть 1 — Создание, Хранение, Синхронизация, Отображение, Майнинг и Доказательная работа

Reading time9 min
Views96K
Доброго всем! Мы тут потихоньку начали исследовать новое совсем для нас направление для обучения — блокчейны и нашли то, что оказалось интересным в рамках нашего курса по Python, в том числе. Чем, собственно, и хотим поделиться с вами.

Читать дальше →

Регулярные выражения в Python от простого к сложному. Подробности, примеры, картинки, упражнения

Reading time25 min
Views1.7M

Регулярные выражения в Python от простого к сложному




Решил я давеча моим школьникам дать задачек на регулярные выражения для изучения. А к задачкам нужна какая-нибудь теория. И стал я искать хорошие тексты на русском. Пяток сносных нашёл, но всё не то. Что-то смято, что-то упущено. У этих текстов был не только фатальный недостаток. Мало картинок, мало примеров. И почти нет разумных задач. Ну неужели поиск IP-адреса — это самая частая задача для регулярных выражений? Вот и я думаю, что нет.
Про разницу (?:...) / (...) фиг найдёшь, а без этого знания в некоторых случаях можно только страдать.

Плюс в питоне есть немало регулярных плюшек. Например, re.split может добавлять тот кусок текста, по которому был разрез, в список частей. А в re.sub можно вместо шаблона для замены передать функцию. Это — реальные вещи, которые прямо очень нужны, но никто про это не пишет.
Так и родился этот достаточно многобуквенный материал с подробностями, тонкостями, картинками и задачами.

Надеюсь, вам удастся из него извлечь что-нибудь новое и полезное, даже если вы уже в ладах с регулярками.
Читать дальше →

Мега-Учебник Flask, Часть XII: Даты и время (издание 2018)

Reading time8 min
Views25K

Мега-Учебник Flask, Часть XII: Даты и время (издание 2018)


Miguel Grinberg




Туда Сюда


Это двенадцатая часть серии Мега-Учебник Flask, в которой я расскажу вам, как работать с датой и временем таким образом, что бы пользователи, не зависели от того, в каком часовом поясе они находятся.

Читать дальше →

Big Data от А до Я. Часть 1: Принципы работы с большими данными, парадигма MapReduce

Reading time6 min
Views525K

Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.



Проблематику больших данных постараемся описывать с разных сторон: основные принципы работы с данными, инструменты, примеры решения практических задач. Отдельное внимание окажем теме машинного обучения.



Начинать надо от простого к сложному, поэтому первая статья – о принципах работы с большими данными и парадигме MapReduce.


Читать дальше →

Пробуем q-learning на вкус, повесть в трех частях

Reading time11 min
Views24K
Эта статья — небольшая заметка о реализации алгоритма q-learning для управления агентом в стохастическом окружении. Первая часть статьи будет посвящена созданию окружения для проведения симуляций — мини-игр на поле nxn, в которых агент должен как можно дольше продержаться на удалении от противников, движущихся случайным образом. Задача противников, соответственно, его настигнуть. Очки начисляются за каждый ход, проведенный агентом в симуляции. Вторая часть статьи затронет основы q-learning алгоритма и его имплементацию. В третьей части попробуем поменять параметры, которые определяют восприятие окружения агентом. Проанализируем влияние этих параметров на результативность его игры. Акцент я специально сместил в сторону использования минимального количества сторонних модулей. Цель — прикоснуться к самой сути алгоритма, так сказать потрогать руками. Для реализации будем использовать только «pure» python 3.


Читать дальше →

Datalore: открываем бета-версию приложения для анализа данных на Python

Reading time3 min
Views27K
Привет, Хабр!

В рядах инструментов JetBrains пополнение. Мы запускаем открытую бета-версию Datalore — умной веб-среды для анализа и визуализации данных на языке Python.

Машинное обучение уверенно захватывает мир: алгоритмы интеллектуального анализа данных стоят за современными коммерческими разработками и исследованиями. Мы разработали приложение, с которым решать задачи машинного обучения легко и приятно: все необходимые инструменты data science доступны из коробки, а умный редактор кода на Python облегчает процесс анализа данных.


Читать дальше →

«Оч.умелые ручки»: делаем Tableau/Qlik из R и «синей изоленты»

Reading time4 min
Views5.5K

Является продолжением предыдущих публикаций.


Естественно, что название является потешным, но, как хорошо известно, в каждой шутке есть доля правды. Сама тема возникла, когда в очередной сотый раз пришлось слышать настойчивое пожелание о том, что необходим «гибкий конструктор отчетов/графиков». После определенного момента проще взять и сделать, чем в очередной раз объяснять, что tidyverse покрывает все необходимые потребности.


Сама постановка задачи предельно проста: обеспечить графический интерфейс для рисования разнообразных графических представлений по произвольным табличным данным. Классическое решение представляет собой две связанные сущности:


  • интерфейс с большим-большим количеством менюшек и кнопочек, с множественными закулисными IF для управления взаимными состояниями этих элементов;
  • «гибкий плоттер» с большим количеством вложенных IF для отрисовки графиков в соотвествии со скормленным данными и положением кнопочек-ползунков, выставленных в UI.

С одной стороны делать «Yet Another Tableau» совершенно неинтересно. С другой стороны, постановка в стиле «сделать так, чтобы все было, но ничего не надо делать» — типичная задача для ТРИЗ.


В целом, после непродолжительных размышений было выработано решение, которое почти удовлетворяет последней постановке. Само Shiny приложение пока под NDA, свободно публикуемый прототип приведен на картинке.



Две ключевых идеи по упрощению задачи следующие (ничего нового, все уже придумано до нас):


  1. вместо статически заданного UI переходим к динамически генерируемому;
  2. используем интерпретатор R не только для исходного кода, но и внутри самого кода.

Идея 1. Динамический web-интерфейс


Вариант, когда все управляющие элементы статически заданы и меняется лишь их параметризация (название, состояние, списки, выбранные элементы ...) удобен на этапе дизайна. Все понятно, все очевидно, можно ручками пощупать. Но если допустимые состояния этих элементов очень сильно связано как с исходными данными для анализа (data.frame), так и с состоянием друг друга, мы попадаем в ситуацию весьма большого количества нетривиальных обработчиков событий по каждому элементу. Много-много запутанного кода.


Сделаем по-другому. Вместо UI элементов со сложным поведением раскидываем с помощью uiOutput placeholder-ы, в которые динамически рассчитываем и генерируем с помощью shiny::renderUI представление этого элемента. Все внешние параметры, требуемые для генерации элемента, трактуем как реактивные элементы (reactive). При этом все такие интерактивные элементы выступают в качестве «автономных агентов», которые смотрят на окружение и подстраиваются под него. Пользователь изменил состояние одного элемента — все зависимые стали пересчитывать по очереди свое состояние (мы явно не обрабатываем события, а используем реактивный подход shiny). При изменении их состояния могут возникнуть новые индуцированные изменения. И так, пока все не стабилизируется.


В результате, в коде остается только один обработчик (кнопка «Go»)
  observeEvent(input$gen_plot, { # код демонстрирует принцип

    escname <- function(x){
      # имена колонок надо закавычить
      # .....
    }

    point_code <- ""
    if(input$shape_type!="__NO_MAPPING__") {
      aes <- c("shape"=escname(input$aes_shape_col), "color"=escname(input$aes_color_col))
      point_code <- buildPointCode(fixed=c("shape"=input$shape_type, "color"=glue("'{input$plot_color}'")), aes=aes)
    }

    line_code <- ""
    if(input$line_type!="__NO_MAPPING__") {
      aes <- c("linetype"=escname(input$aes_linetype_col), "color"=escname(input$aes_color_col))
      line_code <- buildLineCode(fixed=c("linetype"=input$line_type, "color"=glue("'{input$plot_color}'")), aes=aes)
    }

    gcode <- glue("ggplot(data_df(), aes(x=`{input$x_axis_value}`, y=`{input$y_axis_value}`))\\
                  {point_code} {line_code} + xlab('{input$x_axis_label}')") %>%
      style_text(scope="spaces")

    plot_Rcode(gcode)
  })  
Читать дальше →

Не сверточные сети

Reading time7 min
Views16K


Достоинства, проблемы и ограничения сверточных нейронных сетей (CNN) в настоящее время достаточно неплохо изучены. Прошло уже около 5 лет после признания их сообществом инженеров и первое впечатление «вот теперь решим все задачи», хочется верить, уже прошло. А значит, пришло время искать идеи, которые позволят сделать следующий шаг в области ИИ. Хинтон, например, предложил CapsuleNet.
Вместе с Алексеем Редозубовым, опираясь на его идеи об устройстве мозга, мы тоже решили отступить от мейнстрима. И сейчас у меня есть что показать: архитектуру (идёт заглавной картинкой для привлечения внимания) и исходники на Tensorflow для MNIST.

Более формально, результат описан в статье на arxiv.
Читать дальше →

Сверточная сеть на python. Часть 3. Применение модели

Reading time7 min
Views34K

Это заключительная часть статей о сверточных сетях. Перед прочтением рекомендую ознакомиться с первой и второй частями, в которых рассматриваются слои сети и принципы их работы, а также формулы, которые отвечают за обучение всей модели. Сегодня мы рассмотрим особенности и трудности, с которыми можно столкнуться при тестировании вручную написанной на python сверточной сети, применим написанную сеть к датасету MNIST и сравним полученные результаты с библиотекой pytorch.
Читать дальше →

Пишем собственный миниатюрный Redis-сервер на Python

Reading time9 min
Views11K

На днях мне пришла в голову мысль, что было бы здорово написать простой Redis-подобный сервер баз данных. Хотя у меня значительный опыт работы с приложениями WSGI, сервер базы данных представил новый вызов и оказался хорошей практикой в процессе обучения работе с сокетами в Python. В этой статье расскажу, что я узнал в процессе исследования.

Читать дальше →

Препарирование файлов .XLSX: введение, стили ячеек

Reading time5 min
Views26K
Не так давно по долгу службы понадобилось редактировать файлы MS Office (в первую очередь MS Word и MS Excel) средствами PL/SQL, то есть языка, с .NET не связанного практически никак. В связи с этим возникла проблема, что в руководстве от Microsoft про редактирование этих файлов, что называется, «руками» не сказано практически ничего, а единственный вменяемый сайт-справочник по этому делу, видимо, не обновлялся года этак с 2010. Понимание необходимости свести воедино все, что я по крупицам собрал со Stackoverflow и собственных экспериментов, пришло почти сразу.

Сразу хочется сделать несколько замечаний.

Первое. В основном говорить буду про то, с чем сталкивался лично. Претензий на стопроцентное знание «изнанки» формата у меня нет.

Второе. Как многие, вероятно, знают, файлы MS Office 2007 и выше представляют собой архив, который можно открыть с помощью любого архиватора (WinRAR, 7zip и так далее).

Третье. «Под капотом» у этих файлов — в основном XML-разметка, гордо именуемая OOXML или просто OpenXML. Поэтому, в принципе, для понимания принципов редактирования файлов «руками» достаточно будет Блокнота (или, что удобнее, Notepad++).

Итак, начнем с формата MS Excel как наиболее употребимого для генерации всевозможных отчетов, выгрузок из БД и иже с ними.
Читать дальше →

Препарирование файлов .XLSX: строковые значения, разметка ячеек

Reading time7 min
Views19K
Итак, продолжаем разговор. На всякий случай уточню, что начало здесь.

Про строковые значения и метод их хранения я уже вскользь упоминал в первой части, а сейчас поговорим подробнее. Представим, что у нас есть таблица, заполненная строковыми данными, и что она большая. При этом крайне маловероятно, что все значения в ней будут уникальны. Некоторые из них нет-нет, да повторятся где-нибудь в разных частях таблицы. Хранить такой массив «как есть» внутри XML-разметки листа нерационально с точки зрения ресурсов ПК. Поэтому все строковые значения вынесены в отдельный файл, %file%/xl/sharedStrings.xml. Часть его, которая нас интересует, выглядит, допустим, так:
Читать дальше →

Торговая стратегия для торговли коинтегрированными парами акций

Reading time8 min
Views9.3K
Цель данной статьи — поделиться простейшей стратегией статистического арбитража, основанной на торговле коинтегрированными парами акций, которые были выявлены на Московской и Нью-Йоркской биржах.

Если мы возьмём пару коинтегрированных акций, то у нас есть возможность захеджироваться и построить рыночно-нейтральную стратегию, когда убытки по одной бумаге будут компенсироваться прибылями по другой. Как это выглядит на практике?
Читать дальше →

Сверточная нейронная сеть, часть 2: обучение алгоритмом обратного распространения ошибки

Reading time5 min
Views95K
В первой части были рассмотрены: структура, топология, функции активации и обучающее множество. В этой части попробую объяснить как происходит обучение сверточной нейронной сети.

Обучение сверточной нейронной сети


На начальном этапе нейронная сеть является необученной (ненастроенной). В общем смысле под обучением понимают последовательное предъявление образа на вход нейросети, из обучающего набора, затем полученный ответ сравнивается с желаемым выходом, в нашем случае это 1 – образ представляет лицо, минус 1 – образ представляет фон (не лицо), полученная разница между ожидаемым ответом и полученным является результат функции ошибки (дельта ошибки). Затем эту дельту ошибки необходимо распространить на все связанные нейроны сети.
Читать дальше →

Сверточная нейронная сеть, часть 1: структура, топология, функции активации и обучающее множество

Reading time12 min
Views246K

Предисловие


Данные статьи (часть 2) являются частью моей научной работы в ВУЗе, которая звучала так: «Программный комплекс детектирования лиц в видеопотоке с использованием сверточной нейронной сети». Цель работы была — улучшение скоростных характеристик в процессе детектирования лиц в видеопотоке. В качестве видеопотока использовалась камера смартфона, писалось десктопное ПС (язык Kotlin) для создания и обучения сверточной нейросети, а также мобильное приложение под Android (язык Kotlin), которая использовала обученную сеть и «пыталась» распознать лица из видеопотока камеры. Результаты скажу получились так себе, использовать точную копию предложенной мной топологии на свой страх и риск (я бы не рекомендовал).
Читать дальше →

Генеративное Моделирование и AI

Reading time10 min
Views12K
В предыдущей главе мы поговорили о классических дискриминативных моделях в машинном обучении и разобрали простейшие примеры таких моделей. Давайте теперь посмотрим на более общую картину.


Читать дальше →

Akumuli — база данных временных рядов

Reading time10 min
Views26K

Привет! В этой статье я хочу рассказать о проекте Akumuli, специализированной базе данных для сбора и хранения временных рядов. Я работаю над проектом уже больше четырех лет и достиг высокой стабильности, надежности, и возможно изобрел кое-что новое в этой области.


Временной ряд это упорядоченная во времени последовательность измерений, если говорить максимально просто, это то что можно нарисовать на графике. Временные ряды естественным образом возникают во многих приложениях, начиная с финансов и заканчивая анализом ДНК. Наиболее широкое применение базы данных временных рядов находят в мониторинге инфраструктуры. Там же часто наблюдаются самые серьезные нагрузки.


Time-series in finance


“Мне не нужна TSDB, у меня уже есть Х”


Х может быть чем угодно, начиная с SQL базы данных и заканчивая плоскими файлами. На самом деле все это действительно можно использовать для хранения временных рядов, с одной оговоркой — у вас мало данных. Если вы делаете 10 000 вставок в свою SQL базу данных — все будет хорошо какое-то время, потом таблица вырастет в размерах настолько, что время выполнения операций вставки увеличится.

Читать дальше →

Введение в машинное обучение с tensorflow

Reading time12 min
Views199K
Если мы в ближайшие пять лет построим машину с интеллектуальными возможностями одного человека, то ее преемник уже будет разумнее всего человечества вместе взятого. Через одно-два поколения они попросту перестанут обращать на нас внимание. Точно так же, как вы не обращаете внимания на муравьев у себя во дворе. Вы не уничтожаете их, но и не приручаете, они практически никак не влияют на вашу повседневную жизнь, но они там есть.
Сет Шостак

Введение.


Серия моих статей является расширенной версией того, что я хотел увидеть когда только решил познакомиться с нейронными сетями. Он рассчитан в первую очередь на программистов, желающих познакомится с tensorflow и нейронными сетями. Уж не знаю к счастью или к сожалению, но эта тема настолько обширна, что даже мало-мальски информативное описание требует большого объёма текста. Поэтому, я решил разделить повествование на 4 части:

  1. Введение, знакомство с tensorflow и базовыми алгоритмами (эта статья)
  2. Первые нейронные сети
  3. Свёрточные нейронные сети
  4. Рекуррентные нейронные сети

Изложенная ниже первая часть нацелена на то, чтобы объяснить азы работы с tensorflow и попутно рассказать, как машинное обучение работает впринципе, на примере tensorfolw. Во второй части мы наконец начнём проектировать и обучать нейронные сети, в т.ч. многослойные и обратим внимание на некоторые нюансы подготовки обучающих данных и выбора гиперпараметров. Поскольку свёрточные сети сейчас пользуются очень большой популярность, то третья часть выделена для подробного объяснения их работы. Ну, и в заключительной части планируется рассказ о рекуррентных моделях, на мой взгляд, — это самая сложная и интересная тема.
Читать дальше →

Вероятностная интерпретация классических моделей машинного обучения

Reading time8 min
Views32K

Этой статьей я начинаю серию, посвященную генеративным моделям в машинном обучении. Мы посмотрим на классические задачи машинного обучения, определим, что такое генеративное моделирование, посмотрим на его отличия от классических задач машинного обучения, взглянем на существующие подходы к решению этой задачи и погрузимся в детали тех из них, что основаны на обучении глубоких нейронных сетей. Но прежде, в качестве введения, мы посмотрим на классические задачи машинного обучения в их вероятностной постановке.


Читать дальше →

Information

Rating
Does not participate
Registered
Activity