Обновить
84
0
Олег Седухин@boygenius

Machine learning

Отправить сообщение

Менеджмент студенческих ML-проектов на примере Yandex Camp

Время на прочтение8 мин
Охват и читатели6.6K

В этой статье я делюсь опытом менторства проекта на Yandex Camp по машинному обучению — рассказываю о том, что получилось, что нет, и какие выводы сделал. Надеюсь, эти наблюдения помогут будущим менторам и организаторам кемпов улучшить рабочий процесс, а также всем, кому интересно управление проектами.

Встретился с крутыми мотивированными ребятами — мне сначала показалось, что они выполнят весь проект за день. Но опыт показал, что у многих команд были проблемы в самоорганизации командной работы и технической подготовке к работе.

Читать далее

Человек в тени авторегрессии

Время на прочтение16 мин
Охват и читатели1.1K

Я работаю в области машинного обучения и слежу за развитием технологий. Кажется, еще лет пять назад мало кто мог представить такой резкий рост качества генерации контента нейронными сетями. Сейчас нейронные сети консультируют, пишут программы, музыку, стихи и даже помогают соблазнять девушек.

Попробуем порассуждать над следующим вопросом:

Какие изменения в обществе потребуются, чтобы принять и адаптироваться к новым технологиям, которые нас ожидают (и отчасти уже есть сейчас), если сохранятся текущие тенденции в развитии ИИ?

Читать далее

Теория вероятностей в машинном обучении. Часть 2: модель классификации

Время на прочтение14 мин
Охват и читатели27K

В предыдущей части мы рассматривали вероятностную постановку задачи машинного обучения, статистические модели, модель регрессии как частный случай и ее обучение методом максимизации правдоподобия.

В данной части рассмотрим метод максимизации правдоподобия в классификации: в чем роль кроссэнтропии, функций сигмоиды и softmax, как кроссэнтропия связана с "расстоянием" между распределениями вероятностей и почему модель регрессии тоже обучается через минимизацию кроссэнтропии. Данная часть содержит много отсылок к формулам и понятиям, введенным в первой части, поэтому рекомендуется читать их последовательно.

В третьей части (статья планируется) перейдем от метода максимизации правдоподобия к байесовскому выводу и его различным приближениям.

Данная серия статей не является введением в машинное обучение и предполагает знакомство читателя с основными понятиями. Задача статей - рассмотреть машинное обучение с точки зрения теории вероятностей, что позволит по новому взглянуть на проблему, понять связь машинного обучения со статистикой и лучше понимать формулы из научных статей. Также на описанном материале строятся более сложные темы, такие как вариационные автокодировщики (Kingma and Welling, 2013), нейробайесовские методы (Müller et al., 2021) и даже некоторые теории сознания (Friston et al., 2022).

Читать далее

Теория вероятностей в машинном обучении. Часть 1: модель регрессии

Время на прочтение28 мин
Охват и читатели38K

В данной статье мы подробно рассмотрим вероятностную постановку задачи машинного обучения: что такое распределение данных, дискриминативная модель, i.i.d.-гипотеза и метод максимизации правдоподобия, что такое регрессия Пуассона и регрессия с оценкой уверенности, и как нормальное распределение связано с минимизацией среднеквадратичного отклонения.

В следующей части рассмотрим метод максимизации правдоподобия в классификации: в чем роль кроссэнтропии, функций сигмоиды и softmax и как кроссэнтропия связана с "расстоянием" между распределениями вероятностей и почему модель регрессии тоже обучается через минимизацию кроссэнтропии. Затем перейдем от метода максимизации правдоподобия к байесовскому выводу и его различным приближениям.

Данная серия статей не является введением в машинное обучение и предполагает знакомство читателя с основными понятиями. Задача статей - рассмотреть машинное обучение с точки зрения теории вероятностей, что позволит по новому взглянуть на проблему, понять связь машинного обучения со статистикой и лучше понимать формулы из научных статей. Также на описанном материале строятся более сложные темы, такие как вариационные автокодировщики (Kingma and Welling, 2013), нейробайесовские методы (Müller et al., 2021) и даже некоторые теории сознания (Friston et al., 2022).

Читать далее

Проблемы современного машинного обучения

Время на прочтение41 мин
Охват и читатели46K

Во многих популярных курсах машинного и глубокого обучения вас научат классифицировать собак и кошек, предсказывать цены на недвижимость, покажут еще десятки задач, в которых машинное обучение, вроде как, отлично работает. Но вам расскажут намного меньше (или вообще ничего) о тех случаях, когда ML-модели не работают так, как ожидалось.

Частой проблемой в машинном обучении является неспособность ML-моделей корректно работать на большем разнообразии примеров, чем те, что встречались при обучении. Здесь идет речь не просто о других примерах (например, тестовых), а о других типах примеров. Например, сеть обучалась на изображениях коровы, в которых чаще всего корова был на фоне травы, а при тестировании требуется корректное распознавание коровы на любом фоне. Почему ML-модели часто не справляются с такой задачей и что с этим делать – мы рассмотрим далее. Работа над этой проблемой важна не только для решения практических задач, но и в целом для дальнейшего развития ИИ.

Читать далее

CatBoost, XGBoost и выразительная способность решающих деревьев

Время на прочтение42 мин
Охват и читатели76K

Сейчас существенная часть машинного обучения основана на решающих деревьях и их ансамблях, таких как CatBoost и XGBoost, но при этом не все имеют представление о том, как устроены эти алгоритмы "изнутри".

Данный обзор охватывает сразу несколько тем. Мы начнем с устройства решающего дерева и градиентного бустинга, затем подробно поговорим об XGBoost и CatBoost. Среди основных особенностей алгоритма CatBoost:

• Упорядоченное target-кодирование категориальных признаков
• Использование решающих таблиц
• Разделение ветвей по комбинациям признаков
• Упорядоченный бустинг
• Возможность работы с текстовыми признаками
• Возможность обучения на GPU

В конце обзора поговорим о методах интерпретации решающих деревьев (MDI, SHAP) и о выразительной способности решающих деревьев. Удивительно, но ансамбли деревьев ограниченной глубины, в том числе CatBoost, не являются универсальными аппроксиматорами: в данном обзоре приведено собственное исследование этого вопроса с доказательством (и экспериментальным подтверждением) того, что ансамбль деревьев глубины N не способен сколь угодно точно аппроксимировать функцию y = x_1 x_2 \dots x_{N+1}. Поговорим также о выводах, которые можно из этого сделать.

Читать далее

Интерпретация моделей и диагностика сдвига данных: LIME, SHAP и Shapley Flow

Время на прочтение38 мин
Охват и читатели44K

В этом обзоре мы рассмотрим, как методы LIME и SHAP позволяют объяснять предсказания моделей машинного обучения, выявлять проблемы сдвига и утечки данных, осуществлять мониторинг работы модели в production и искать группы примеров, предсказания на которых объясняются схожим образом.

Также поговорим о проблемах метода SHAP и его дальнейшем развитии в виде метода Shapley Flow, объединяющего интерпретацию модели и многообразия данных.

Читать далее

Обзор архитектуры AlphaFold 2

Время на прочтение39 мин
Охват и читатели11K

В данном обзоре мы подробно рассмотрим нейронную сеть AlphaFold 2 от компании DeepMind, с помощью которой недавно был совершен прорыв в одной из важных задач биологии и медицины: определении трехмерной структуры белка по его аминокислотной последовательности.

В первых трех разделах обзора описывается задача, формат входных данных и общая архитектура AlphaFold 2. Далее, начиная с раздела «Input feature embeddings», описываются детали архитектуры. В разделе «Резюме» кратко суммируется основная информация из обзора.

Читать далее

Информация

В рейтинге
Не участвует
Работает в
Зарегистрирован
Активность