В последнее время все больше крупных компаний выделяют свои ресурсы на создание искусственных диалоговых помощников (Алиса от Яндекса, Ассистенты Салют от Сбер и др). С такими системами можно, хоть и не в полной мере, поддерживать диалог. Ассистенты умеют выполнять простые команды: ставить таймер или будильник, вызывать такси, управлять умным домом. Но в то же время разработка таких систем стоит больших денег, а также ресурсов на поддержку. В большинстве своем многим предприятиям не требуется, чтобы система умела поддерживать диалог, а просто отвечала на конкретный вопрос. Аналог современных вопросно-ответных систем появился в 60-х годах XX века и назывался экспертными системами. Экспертная система включала в себя оболочку на естественном языке и позволяла задавать вопросы на узкую тематику. С развитием методов обработки естественного языка вопросно-ответные системы стало возможным выделить в отдельный класс и не акцентировать их под решение специализированной задачи. В статье описан процесс создания вопросно-ответной системы, в частности, с какими трудностями пришлось столкнуться, какие технологии использовались, и приведен реальный пример практического использования на базе поступающих заявок в Приемную комиссию МТУСИ.
Пользователь
Что такое тезаурус и как определить семантическое сходство слов
При разработке чат-ботов и голосовых ассистентов часто возникает задача нахождения семантического сходства слов. Причина тому – наличие в языке большого количества схожих по смыслу слов и выражений.
Автоматический синтез речи: взгляд лингвиста
Что первым придет в голову, если перед нами встанет задача автоматического порождения речи по тексту? Вероятнее всего, мы позаботимся о расстановке пауз между словами, постараемся правильно выбрать интонацию фразы и расставить смысловые акценты. Обязательно построим фонетическую транскрипцию: орфография и произношение далеко не всегда однозначно соответствуют друг другу, о чем компьютер не узнает без нашей помощи. Полученную транскрипцию переведем в цифровой сигнал, который затем преобразуем в звуковые колебания.
Алгоритм обучения CBOW архитектуры для векторизации слов
В этой статье подробно разбирается алгоритм обучения архитектуры CBOW (Continuous Bag of Words), которая появилась в 2013 году и дала сильный толчок в решении задачи векторного представления слов, т.к. в первый раз на практике использовался подход на основе нейронных сетей. Архитектура CBOW не столь требовательна к наличию GPU и вполне может обучаться на ЦП (хотя и более медленно). Большие готовые модели, обученные на википедии или новостных сводках, вполне могут работать на 4-х ядерном процессоре, показывая приемлемое время отклика.
Информация
- В рейтинге
- Не участвует
- Зарегистрирован
- Активность