Углеродные нанотрубки стали неотъемлемой частью современных технологий. Послужили этому их механические и электронные свойства, а также нанометровые размеры. Применяется данный материал в очень многих областях: от элементов питания до дисплеев. Качество нанотрубок, по большей степени, зависит от показателя хиральности (когда нет симметрии между правой и левой сторонами). Чем меньше этот показатель, тем лучше будет нанотрубка. Вариантов создания нанотрубок существует уже несколько, и они все работают. Но это не значит, что какие-то энтузиасты не попытаются придумать свой новый способ, который будет лучше предшественников. Именно об этом и пойдет речь в исследовании, в котором мы будем с вами разбираться. Поехали.
Предыстория
Для начала, вкратце, вспомним что есть углеродная нанотрубка. Это можно просто понять по названию сего материала. Во-первых, это цилиндрическая структура (трубка) из графитовых плоскостей, размеры которой могут быть порядка нескольких нанометров. Различают два основных типа нанотрубок: одностенные и многостенные (изображение ниже).
В сегодняшнем исследовании речь пойдет об одностенных. Дабы новый метод создания нанотрубок было с чем сравнивать, исследователи приводят в пример несколько уже существующих способов, которые позволяют достичь низкого показателя распределения хиральности, что крайне важно для нанотрубок. Первый способ — пост-синтетическая обработка — чаще всего основан на таких техниках:
- ионообменная хроматография* (IEX) одностенных нанотрубок, закрученных как ДНК;
- центрифугирование в градиенте плотности* (DGU);
- эксклюзионная хроматография*;
- двухфазовое водное разделение*.
Ионообменная хроматография* — способ разделения ионов и полярных молекул на основании зарядов разделяемых молекул.Все вышеперечисленные техники так или иначе связаны с растворением чего-то в чем-то. Исследователи считают, что в этом кроется большая проблема, так как в процессе растворения образец может быть загрязнен. А это негативно скажется на качестве нанотрубки, как следствие и на ее свойствах.
Центрифугирование в градиенте плотности* — разделение макромолекул на базе их распределения в разных по плотности частях градиента.
Эксклюзионная хроматография* — разделение молекул по размеру за счет их отличной друг от друга способности проникать в поры твердой фазы (или жидкости), связанной на инертном носителе.
Двухфазное водное разделение* — распределение частиц между фазами двухфазовой водной системы.
Второй способ это непосредственное выращивание одностенных нанотрубок. Который, по словам ученых, лишен вышеописанной проблемы загрязнения. Выращивание нанотрубок использует их отдельные сегменты, углеродистые молекулярные внедрения и катализаторы. Главным недостатком выращивания является сложность проведения сего процесса и малый результат.
Есть и еще один способ создать нанотрубки, который, на первый взгляд, лишен недостатков, — это химическое осаждение из газовой фазы с плавающим катализатором (FC-CVD). Производить таким способом нанотрубки можно быстро и в большом объеме, а их свойства не будут подвержены отрицательным изменениям. К тому же нанотрубки можно собирать на мембранном фильтре для формирования тонких пленок, готовых к применению. Звучит все весьма радужно, однако и тут кроется каверзный момент. Находясь в аэрозольной среде, катализаторы могут вызывать сложности в процессе селективного выращивания нанотрубок с низкой хиральностью. Решить эту проблему можно посредством внедрения небольшого количества NH3, способного сузить хиральное распределение. Однако атомы N могут при высоких температурах загрязнить нанотрубки, чем изменят ее электронные свойства.
Какой способ не рассматривай, всегда найдется какой-то неприятный недостаток, с которым приходится считаться. Однако исследователи предложили вариант, когда можно избежать вышеописанных проблем.
Создание образца и результаты
Ученые решили не придумывать новый способ создания нанотрубок, а усовершенствовать имеющийся, а именно химическое осаждение из газовой фазы с плавающим катализатором. Метод усовершенствования оказался весьма прост — добавление небольшого количества СО2.
А теперь по порядку. Одностенные нанотрубки были синтезированы из СО (источник углерода) при объемном расходе 350 см3/мин. В качестве катализатора выступал ферроцен ((η5-С5Н5)2Fe), переносимый потоком СО в 50 см3/мин.
Настройка процесса выращивания нанотрубок осуществлялась посредством введения в реактор различного объема СО2 с объемным расходом 0, 1, 1.5 и 2.0 см3/мин, что соответствует таким объемным долям: 0, 0.25, 0.37 и 0.50 об.%. Температура при этом составляла 850 или же 880 °C.
Схема работы реактора
Внедрение разного объема СО2 привело к тому, что пленки из нанотрубок получились разного цвета. Это отчетливо видно на изображении ниже. Данные пленки были получены при температуре 850 °C.
Проведя просвечивающую электронную микроскопию и энергодисперсионную рентгеновскую спектроскопию, ученые обнаружили, что разница в цвете никоем образом не влияет на общие показатели наночастиц и размер. Также было выявлено, что образцы обладают высоким показателем чистоты.
Просвечивающая электронная микроскопия (a, b, c) и темнопольная микроскопия (d, e, f) трех образцов с разной объемной долей СО2.
Средний диаметр нанотрубок также зависит напрямую от концентрации СО2. Так для 0, 0.25, 0.37 и 0.50 об.% средний диаметр составил соответственно 1.1, 1.3, 1.8 и 1.9 нм.
Ввиду того, что цвет пленки и диаметр нанотрубок отображают концентрацию СО2, логично предположить, что данная примесь тем или иным образом меняет и сами свойства нанотрубок.
У зеленого образца (0.25 об.%) наблюдаются довольно выраженные резкие изменения показателя поглощения при длине волны примерно 610 нм, а у коричневого образца (0.37 об.%) — при 760 нм.
Спектр поглощения образцов с разной объемной долей СО2.
А вот другие образы (0 и 0.5 об.%), у которых подобных скачков не наблюдалось, не имеют яркого цвета, а остаются серыми.
Чтобы глубже рассмотреть зависимость распределения хиральности (n, m) от концентрации СО2 был проведен электронный дифракционный анализ образца.
Электронный дифракционный анализ
Изображение выше (а) является типичным снимком одностенной нанотрубки, а изображение b — картина дифракции электронов (EDP) этой нанотрубки. Проведя анализ межстрочного интервала был установлен индекс хиральности — (16,13).
Электронный дифракционный анализ образца 0 и 0.25 об.%.
Проведение такого же анализа рабочих образцов (изображения выше) показал значительно лучшие результаты: (8,7) и (11, 9).
При увеличении концентрации СО2 диаметр нанотрубок также увеличивается. При объемной доле СО2 в 0.25 об.% диаметр составляет 1.0 — 1.5 нм. Этот показатель напрямую связан и с показателем поглощения образца.
Получается, что при оптимальном диаметре нанотрубки и достаточно хорошем показателе распределения хиральности, образец имеет зеленый цвет. В противном же случае мы наблюдаем серый цвет. Это замечание стоит соотнести с концентрацией СО2, то есть ее оптимальный об.% равен 0.25.
Еще одним из показателей структуры нанотрубки является угол хиральности (угол между направлением сворачивания и направлением, в котором соседние шестиугольники имеют общую сторону).
Чтобы получить трубку, то есть скрутить графитовую плоскость, нужно разрезать последнюю по пунктирным линиям и свернуть по вектору R.
Все рассматриваемые образцы (0, 0.25 и 0.50) показали вполне удовлетворительный угол хиральности — 20°-30°.
Электронный дифракционный анализ также был проведен и для проверки электронных свойств связки нанотрубок. Как оказалось, все трубки в связке имели разный угол хиральности: 3.1°, 18.9°, 26.1°.
Электронный дифракционный анализ связки нанотрубок.
Также был обнаружен занимательный факт: с увеличением концентрации СО2 с 0 до 0.50 увеличивался процент металлических нанотрубок (имеется ввиду электропроводимость) с 29.8 до 46.3%. Однако, когда концентрация достигала 1.23 об.%, качество нанотрубок сильно уменьшалось.
Не меньшую роль в процессе создания нанотрубок играет температура. При более высоких температурах можно снизить скорость разложения СО (основы нанотрубок в данном исследовании). Это даст возможность лучше контролировать процесс синтеза с достижением более низкого показателя хирального распределения.
Вариации хиральности (а) и диаметра (b) нанотрубок при 0.25 об.% СО2 и температуре 880 °C.
Сравнивая эти показатели с подобными, но при температуре 850 °C, видно, что была получена хиральность значительно ниже, сконцентрированная вокруг (11,9). А диаметр большинства трубок (более 98%) варьируется в диапазоне 1.2-1.5 нм, что является великолепным результатом для данного исследования.
Отчет ученых об их исследовании доступен тут. А дополнительные материалы (графики, снимки, таблицы и т.д.) — тут.
Эпилог
Ученые честно заявляют, что многое еще предстоит проверить. Ибо некоторые показатели, такие как электропроводимость и диаметр, в образцах без СО2 и с СО2 не настолько внушительно отличаются, чтобы быть на 100% уверенными в безоговорочной победе. Однако важность применения СО2 в процессе создания одностенных углеродных нанотрубок однозначно неоспорима. Данная методика требует дальнейшего изучения и доработки.
Помимо прочего, ученым удалось успешно создать нанотрубки, пленки из которых отличаются по цвету ввиду различий в свойствах. Разная концентрация СО2 изменяет диаметр нанотрубок и показатели хиральности, что в результате может дать несколько цветовых вариантов пленок: зеленый, коричневый и серый. Цветовое разнообразие таких материалов открывает новые пути их применения, но и в существующих также произойдут изменения.
Данное исследование это яркий пример неординарного и новаторского подхода к решению «старого» вопроса и демонстрация всем известной истины «все гениальное — просто».
Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).
3 месяца бесплатно при оплате новых Dell R630 на срок от полугода — 2 х Intel Deca-Core Xeon E5-2630 v4 / 128GB DDR4 / 4х1TB HDD или 2х240GB SSD / 1Gbps 10 TB — от $99,33 месяц, только до конца августа, заказать можно тут.
Dell R730xd в 2 раза дешевле? Только у нас 2 х Intel Dodeca-Core Xeon E5-2650v4 128GB DDR4 6x480GB SSD 1Gbps 100 ТВ от $249 в Нидерландах и США! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?