Comments 21
Странное какое-то решение. Изначально у вас было одно приложение и вас хоть как-то проверял компилятор, а в итоге вы все вынесли в конфигурацию и никакой компилятор вас уже не спасет.
Почему вы решили все эти трансформации держать в одной джобе? Казалось бы уже напрашивается разделение на части: одна принимает данные из источников и готовит полуфабрикат, а другая часть из полуфабриката делает итоговую витрину.
Когда появляется такая внутренняя сложность, то уже хочется писать какие-нибудь тесты. Если бы у вас эта трансформация состояла из маленьких деталей, то каждую деталь можно будет покрыть интеграционными тестами. Соответственно и запускать можно будет ровно то, что требуется.
Хотя надо заметить, ничего похожего на описанный случай построения витрины из 20 источников у нас нет, поэтому не могу полностью исключить, что наш опыт тут неприменим.
Ну т.е. у нас даже был опыт, когда мы прикрутили парсер HQL, который строит AST дерево для запроса, применяли его, и пытались тесты писать, на генерацию запроса (который у нас был динамический). Плюнули, и работаем на API.
И в результате резко возрастают требования к команде.
Но в этом нет необходимости.
По сути рост сложности спарк проекта, это всего лишь добавление новых датасетов.
Да и что тут покрывать тестами? Есть такой датасет или нет?
Поэтому если идти указанным в самом начале путем, тем, про который вы говорите, это усложнение, которого можно избежать.
Именно это и превратит простой проект в сложный.
Ну нет же. Он у вас уже сложный, независимо от того, есть там тесты или нет. Сложность возникает не потому, что мы тесты написали, а из требований: количества сущностей и связей между ними.
Вы ведь и сами заметили эту сложность. Вот только мне не понятно, почему вы считаете, что перенос сложности в json-конфиг уменьшает ее? Я думаю от этой сложности уже никуда не деться.
Тестами можно покрыть атрибутный состав датасетов и результаты промежуточных действий.
А разработка на ETL процессов на spark выглядит несколько иначе. Сначала заказчики хотят витрину. По ходу добавляются еще пожелания, витрин становится больше. И вот тут важный момент — резко растет объем проекта. Что делается в этом случае? Обычно, применяются подходы, усложняющие код, как при разработке обычных приложений.
То есть команда проекта должна усложнить код.
Но людей, способных разрабатывать spark на подходящем уровне крайне мало, а набрать новых нереально, так как это очень дорого и долго. Что получается? Надо на проекте постоянно держать команду spark разработчиков высокого класса. А где они?
А людей, знающих SQL, и имеющих начальные знания и разработке много.
Вот и хочется быть уверенным, что можно осилить проект где обрабатывается не пять источников, как предполагалось сначала, а пятьсот. А это можно сделать, если код проекта остается простым, при этом обеспечивая и увеличение объема проекта, и возможность отладки.
Вы все правильно говорите, но эти тезисы не отвечают на вопрос: зачем прятать сложность в json конфигурацию? Хотите чтобы все писалось на SQL — да флаг вам в руки. Но почему этот SQL нужно писать в какой-то левый файлик и городить какие-то параметры запуска для oozie?
Можно ведь сделать отдельные спарк-приложения и тем же oozie настроить их последовательный запуск. Не изобретая велосипед с json-конфигом.
Зачем вам вообще спарк, если вы SQL пишете? Опять же oozie поддерживает запуск Hive скриптов, где чистый SQL без всякой обвязки.
1. зачем прятать сложность в json конфигурацию?
Не прятать, а выносить из кода во внешний файл, чтобы код не усложнялся с усложнением проекта. Это всего лишь развитие идеи параметризации проекта. Во внешний файл выносим не список источников, а чуть больше.
2. Можно ведь сделать отдельные spark-приложения и тем же oozie настроить их последовательный запуск.
Oozie запускает Spark Action в отдельных сессиях. Тогда промежуточные данные придется сохранять на диск. Во-первых, это место. Во-вторых, тогда весь смысл spark оптимизации теряется.
3. Опять же oozie поддерживает запуск Hive скриптов, где чистый SQL без всякой обвязки.
Hive пока работает на map-reduce и на схожих задачах на порядке медленней spark.
Понял. Вы хотите все это запустить в одной spark-сессии. Но если вы храните все в памяти, то у вас при сбое все промежуточные расчеты пропадут и надо будет заново все считать.
Hive пока работает на map-reduce и на схожих задачах на порядке медленней spark.
SET hive.execution.engine=spark;
Стало доступно примерно в 2017 году.
У нас Hive работает на Tez и производительность весьма неплоха. Один фрагмент на Hive-Tez мы пробовали переписать на спарк ради оптимизаций, но серьезного выигрыша не получили.
Не, ну так тоже плохо. Мы так пробовали. Если вы внутри одного спарка — у вас какая-никакая проверка, в том числе и статическая. Если вы вылезли в узи — все, конец проверкам, все что вы знаете — это наличие файлов в HDFS. Ну т.е. тут уже заморочки другого вида возникают, потому что возможностей узи по планирования исполнения задач сильно не хватает. И хочется чего-то такого… экзотического, скажем, вот этот процесс запустить когда закончатся вон тот и вон тот, но при этом дождаться загрузки кластера ниже N% (или скажем наступления дня/ночи).
все что вы знаете — это наличие файлов в HDFS.
Странно. Спарк ведь не черные ящики выдает в результате своей работы. А орки или паркеты поддерживают типизацию схемы. Ну и еще есть метаданные в пропертях hive-таблицы и где там еще спарк их сохраняет.
Проверки схемы на мой взгляд лучше вынести на этап интеграционного тестирования.
Накладные ресурсы на поднятие спарк-сессии ничтожны по сравнению с общим временем выполнения. А если это не так, то кажется не тот молоток используется.
Ну и я в целом плохо понимаю как можно оркестрировать множество джобов в рамках одного приложения, без внешнего инструмента. Что если там только один кусок завис или упал?
Ну и потом, самое главное чего вы не знаете — это как раз факта, что какой-то кусок завершился. Ну там, упрощенно — мы как-то пытались заменить spark.jdbc на Sqoop, потому что там достаточно навороченная оптимизация по поводу распараллеливания запросов на несколько потоков. Пришли к простому выводу — что мы знаем про процесс Sqoop, кроме того, что он завершился? Практически ничего. Что мы видим в HDFS? А фиг его знает. Ну т.е. если в одном приложении я скажем словил исключение — то в случае отдельных приложений и оркестратора с этим уже сложно. Сильно сложнее. Это не значит, что мы узи не применяем, это лишь значит, что на его уровень выходить обычно невыгодно, не удобно, негибко.
У нас интеграции более строгие. Все что не проходит первоначальную валидацию, возвращается источнику в виде ошибки.
А вот факт завершения куска мы знаем. т.к. oozie джоба создает приложение, которое видно в yarn. Ну а там есть и логи и занимаемые ресурсы в процессе работы и т.п.
В самом oozie можно как success path построить, так и error path.
Скуп раньше был, но выкинули, как раз чтобы заливка сотни табличек из РСУБД в hive была в одной спарк сессии. Очень сэкономили на накладных расходах. Но там у нас логики нет. Просто читаем все данные и все эти данные пишем.
А у вас их сколько, просто для понимания? Если бы мы так делали, у нас бы их возможно было в 10 раз меньше. Ну просто потому, что та сторона свободна в выборе решений, и нам от них нужно не многое, и мы им эту свободу даем.
>А вот факт завершения куска мы знаем.
Знаем. Но опять же — только в рамках одного узи задания, не двух и не трех. Т.е. мы должны интегрироваться через узи в виде одного потока — а это намного менее приятно, чем писать на скале, увы. Ну и потом — попробуйте сделать так, чтобы часть узи приложения стартовала, когда закончатся несколько других? Это же только fork для этого есть, а он ужасно негибкий, пока все его ветки не завершились, следующий кусок не стартует (а иногда хочется — потому что ресурсы-то уже освободились).
Ну и скажем, я вот уже пару лет не могу понять, могу ли я гарантированно вернуть из sub-workflow что-то типа key-value пар, которые узи называет data? Ну или даже хотя бы сообщение об ошибке, для простоты.
При этом в своем приложении я есттественно хозяин-барин — хочу исключения кидаю, хочу в функциональном стиле, возвращают результаты в виде Option[Dataset[Row]], ну или там Try[Dataset[Row]], т.е. кусок, который может не вернуть результат или упасть. Т.е. по сути — модуль моего приложения, это скорее некая трансформация над Dataset, которая может быть описана на API, ну и протестирована. А трансформации — это понятно JOIN, UNION, ну и некоторые другие посложнее.
А у вас их сколько, просто для понимания?
На днях внедрили №132. Если у вас тысяча интеграций, то наверное строгий подход действительно не подойдет.
попробуйте сделать так, чтобы часть узи приложения стартовала, когда закончатся несколько других?
Расскажите как вы это же сделаете на спарке. Особенно ту часть, которая про запуск при "ресурсы то уже освободились".
гарантированно вернуть из sub-workflow что-то типа key-value пар, которые узи называет data?
Пишете на диск, читаете. Ну или не на диск, а в какую-нибудь СУБД. Зачем сами данные через oozie таскать то? Можно попробовать наколдовать что-нибудь через stdout.
Сообщение об ошибке в результатах запуска тоже не понятно зачем нужно. Можно в лог написать. Если в каком-нибудь UI показывать, то тоже надо в специальное место писать. Не будет же UI лезть в oozie за ошибками. А какой-нибудь hue и в логи и в stdout сам лезет за стектрейсами.
Впрочем я про оркестрацию джобов на scala тоже думал, но у нас очень разнородный проект. Есть куски на hive есть куски на спарке и нет ресурсов и необходимости все переводить на однообразные рельсы.
Главное тут то, что они важнее. И нам даже если интеграция нужна, ставить им какие-то требования не всегда разумно. Поэтому жесткая интеграция в такой ситуации — это будет скорее всего медленно. Ну т.е. мы можем попросить — но та сторона обычно имеет право мягко отказаться в форме «ну мы это сделаем… через годик» :)
>Расскажите как вы это же сделаете на спарке.
На спарке вряд ли я буду прямо такое писать. Это скорее были мечты об оркестраторе, который мог бы легко проверить загрузку по API ярна. Узи наверное сможет — но скорее гипотетически.
Но с другой стороны, вот у нас есть источник данных — внешний оракл, например. И есть там схема и скажем 1000 таблиц. И мы просто вынуждены оптимизировать сразу две вещи — нагрузку на наш кластер, и нагрузку на источник, потому что оракл тот — он обычно куда менее мощный, чем хадуп, у него редко когда 1/100 от наших ядер в наличии (хотя бывает что их и много — но тогда они обычно загружены по уши). И я подозреваю, что мне все же придется писать это на спарке, как ни крути. Чтобы и jdbc не больше чем в N потоков, которые оракл позволит, и в тоже время, чтобы 1000 таблиц постоянно в эти N потоков работали, а не так как в узи через форки получается — пока последний поток форка не завершился, весь форк тоже.
>Зачем сами данные через oozie таскать то
Ну, затем что узи умеет их анализировать в своем EL. Т.е. на эти данные можно навесить условия как на ${data[имя action][key]}. А больше пожалуй и никак — разве что написать функцию в узи (так можно, но я даже не пытался — мороки полно) которая прочитает файл, и возьмет значение там.
>Можно попробовать наколдовать что-нибудь через stdout.
Ну вот в том-то и дело, что узи — это почти как unix shell и его пайпы — весь обмен через файлы (я понимаю, отчего так — они же пытались интегрировать в себя и shell action тоже). А хочется передавать структурированную информацию. И писать все в файлы это конечно возможно — но иногда очень неудобно.
>Сообщение об ошибке в результатах запуска тоже не понятно зачем нужно. Можно в лог написать.
Ну вот это мне как раз очевидно. У нас поддержка работает примерно так — вот Hue, вот потоки узи. Вот этот красный, какого фига? Идем и смотрим на него, что там упало, какая таблица? Все что можно увидеть в узи — это сообщение об ошибке, и эти самые Data, т.е. key-value. Data — это наши метрики, скажем, а сообщение об ошибке — ну это понятно что. Ну т.е. когда это все видно в одном месте — это удобно. А когда это в логах — то разбор полетов уже медленнее на порядок-другой.
При этом у меня скажем типовая картинка — я хочу сделать union, или там except. При этом чтобы это сделать — нужно согласовать схемы двух датасетов. Ну и статические запросы сами по себе ну никак не позволяют это провернуть.
У меня обычная повседневная задача предполагает манипулирование набором колонок датасета, и это не так уж и сложно — пока вы остаетесь в рамках Dataset API. А вот если приходится выйти за его рамки, т.е. грубо говоря, написать что-то типа groupByKey, а потом mapGroups — т.е. применить к датасету функции — вот тут начинается достаточно мозголомная возня по согласованию схем на входе и на выходе.
Ну т.е. пока вы укладываетесь условно, в JOIN/UNION/filter и т.п. операции из набора SQL — то я думаю сваять аналог вашего приложения как DSL внутри Spark Shell было бы не так и сложно. Т.е. прочитать тот же json, и построить некий датасет, который в нем описан — ну так, идеологически выглядит как задачка на недельку. Хотя я известный оптимист в своих оценках :)
Управление кодом Spark-приложений